Massive gauge theories in three dimensions (= at high temperature)

Author(s):  
R. Jackiw
1996 ◽  
Vol 11 (15) ◽  
pp. 2643-2660 ◽  
Author(s):  
R.E. GAMBOA SARAVÍ ◽  
G.L. ROSSINI ◽  
F.A. SCHAPOSNIK

We study parity violation in (2+1)-dimensional gauge theories coupled to massive fermions. Using the ζ function regularization approach we evaluate the ground state fermion current in an arbitrary gauge field background, showing that it gets two different contributions which violate parity invariance and induce a Chern–Simons term in the gauge field effective action. One is related to the well-known classical parity breaking produced by a fermion mass term in three dimensions; the other, already present for massless fermions, is related to peculiarities of gauge-invariant regularization in odd-dimensional spaces.


1978 ◽  
Vol 33 (3) ◽  
pp. 268-274 ◽  
Author(s):  
V. Propach ◽  
F. Steffens

Abstract The structures of two modifications of CuZrF6 by means of neutron diffraction on powder samples in the temperature range from 298-560 K are reported. All modifications consist of octahedra, which share corners in three dimensions and which are centered alternately by Cu2+ or Zr4+. The high temperature α-modification crystallizes in space group Fm3 (No. 202) with α = 7.939 Å. There is experimental evidence, that the CuFe-octahedra are distorted by a static Jahn-Teller-effect. The space group P1̄ (No. 2) with Z = 2 is proposed for the low-temperature γ-modification.


2000 ◽  
Vol 2000 (11) ◽  
pp. 001-001 ◽  
Author(s):  
Peter Arnold ◽  
Guy David Moore ◽  
Laurence G Yaffe

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 601
Author(s):  
H. Weisbrich ◽  
M. Bestler ◽  
W. Belzig

Topology in general but also topological objects such as monopoles are a central concept in physics. They are prime examples for the intriguing physics of gauge theories and topological states of matter. Vector monopoles are already frequently discussed such as the well-established Dirac monopole in three dimensions. Less known are tensor monopoles giving rise to tensor gauge fields. Here we report that tensor monopoles can potentially be realized in superconducting multi-terminal systems using the phase differences between superconductors as synthetic dimensions. In a first proposal we suggest a circuit of superconducting islands featuring charge states to realize a tensor monopole. As a second example we propose a triple dot system coupled to multiple superconductors that also gives rise to such a topological structure. All proposals can be implemented with current experimental means and the monopole readily be detected by measuring the quantum geometry.


2001 ◽  
Vol 2001 (06) ◽  
pp. 069-069 ◽  
Author(s):  
Jan Ambjørn ◽  
Konstantinos N Anagnostopoulos ◽  
Alex Krasnitz

Sign in / Sign up

Export Citation Format

Share Document