Pion exchange between nucleons in static lattice QCD

Author(s):  
H. Markum ◽  
M. Meinhart
2018 ◽  
Vol 175 ◽  
pp. 05017
Author(s):  
Pedro Bicudo ◽  
Marco Cardoso ◽  
Antje Peters ◽  
Martin Pflaumer ◽  
Marc Wagner

We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1−), mass [see formula in PDF] MeV and decay width [see formula in PDF] MeV.


2020 ◽  
Vol 44 (7) ◽  
pp. 071002
Author(s):  
Jinniu Hu ◽  
Ying Zhang ◽  
Hong Shen ◽  
Hiroshi Toki

Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


2014 ◽  
Author(s):  
Mathias Neuman ◽  
Jens Langelage ◽  
Owe Philipsen

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
C. Alexandrou ◽  
A. Athenodorou ◽  
K. Hadjiyiannakou ◽  
A. Todaro

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Ben Hörz ◽  
Dean Howarth ◽  
Enrico Rinaldi ◽  
Andrew Hanlon ◽  
Chia Cheng Chang ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gunnar S. Bali ◽  
Luca Castagnini ◽  
Markus Diehl ◽  
Jonathan R. Gaunt ◽  
Benjamin Gläßle ◽  
...  

Abstract We perform a lattice study of double parton distributions in the pion, using the relationship between their Mellin moments and pion matrix elements of two local currents. A good statistical signal is obtained for almost all relevant Wick contractions. We investigate correlations in the spatial distribution of two partons in the pion, as well as correlations involving the parton polarisation. The patterns we observe depend significantly on the quark mass. We investigate the assumption that double parton distributions approximately factorise into a convolution of single parton distributions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Luke Gayer ◽  
Nicolas Lang ◽  
Sinéad M. Ryan ◽  
David Tims ◽  
Christopher E. Thomas ◽  
...  

Abstract Isospin-1/2 Dπ scattering amplitudes are computed using lattice QCD, working in a single volume of approximately (3.6 fm)3 and with a light quark mass corresponding to mπ ≈ 239 MeV. The spectrum of the elastic Dπ energy region is computed yielding 20 energy levels. Using the Lüscher finite-volume quantisation condition, these energies are translated into constraints on the infinite-volume scattering amplitudes and hence enable us to map out the energy dependence of elastic Dπ scattering. By analytically continuing a range of scattering amplitudes, a $$ {D}_0^{\ast } $$ D 0 ∗ resonance pole is consistently found strongly coupled to the S-wave Dπ channel, with a mass m ≈ 2200 MeV and a width Γ ≈ 400 MeV. Combined with earlier work investigating the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , and $$ {D}_0^{\ast } $$ D 0 ∗ with heavier light quarks, similar couplings between each of these scalar states and their relevant meson-meson scattering channels are determined. The mass of the $$ {D}_0^{\ast } $$ D 0 ∗ is consistently found well below that of the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , in contrast to the currently reported experimental result.


Sign in / Sign up

Export Citation Format

Share Document