Mathematical Modelling of Mass Transport Equations in Fixed-Bed Absorbers

Author(s):  
A. Pérez-Foguet ◽  
A. Huerta
1997 ◽  
Vol 36 (8-9) ◽  
pp. 123-128 ◽  
Author(s):  
C. Nalluri ◽  
A. K. El-Zaemey ◽  
H. L. Chan

An appraisal of the existing sediment transport equations was made using May et al (1989) and Ackers (1991) sediment transport equations for the limit of deposition design criterion and with a deposit depth of 1% of the pipe diameter allowed in the sewers. The applicability of those equations for sewers with larger fixed bed deposit depth was assessed, the equations generally over-estimated the transport velocity. Modifications were made to enable the equations to apply to sewers with large fixed bed deposits present.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Abdon Atangana ◽  
Gerrit van Tonder

We made use of groundwater flow and mass transport equations to investigate the crucial potential risk of water pollution from hydraulic fracturing especially in the case of the Karoo system in South Africa. This paper shows that the upward migration of fluids will depend on the apertures of the cement cracks and fractures in the rock formation. The greater the apertures, the quicker the movement of the fluid. We presented a novel sampling method, which is the combination of the Monte Carlo and the Latin hypercube sampling. The method was used for uncertainties analysis of the apertures in the groundwater and mass transport equations. The study reveals that, in the case of the Karoo, fracking will only be successful if and only if the upward methane and fracking fluid migration can be controlled, for example, by plugging the entire fracked reservoir with cement.


2003 ◽  
Vol 42 (14) ◽  
pp. 3458-3469 ◽  
Author(s):  
Danny C. K. Ko ◽  
John F. Porter ◽  
Gordon McKay

Sign in / Sign up

Export Citation Format

Share Document