Analysis of crystalline solids by means of a parallel FEM method

Author(s):  
B. S. Andersen ◽  
N. J. Sørensen
Author(s):  
L. J. Sykes ◽  
J. J. Hren

In electron microscope studies of crystalline solids there is a broad class of very small objects which are imaged primarily by strain contrast. Typical examples include: dislocation loops, precipitates, stacking fault tetrahedra and voids. Such objects are very difficult to identify and measure because of the sensitivity of their image to a host of variables and a similarity in their images. A number of attempts have been made to publish contrast rules to help the microscopist sort out certain subclasses of such defects. For example, Ashby and Brown (1963) described semi-quantitative rules to understand small precipitates. Eyre et al. (1979) published a catalog of images for BCC dislocation loops. Katerbau (1976) described an analytical expression to help understand contrast from small defects. There are other publications as well.


2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.


2021 ◽  
Author(s):  
Michael Zaworotko ◽  
Shi-Qiang Wang ◽  
Soumya Mukherjee

Coordination networks (CNs) are a class of (usually) crystalline solids typically comprised of metal ions or cluster nodes linked into 2 or 3 dimensions by organic and/or inorganic linker ligands....


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Alexander M. Laptev ◽  
Jürgen Hennicke ◽  
Robert Ihl

Spark Plasma Sintering (SPS) is a technology used for fast consolidation of metallic, ceramic, and composite powders. The upscaling of this technology requires a reduction in energy consumption and homogenization of temperature in compacts. The application of Carbon Fiber-Reinforced Carbon (CFRC) insulating plates between the sintering setup and the electrodes is frequently considered as a measure to attain these goals. However, the efficiency of such a practice remains largely unexplored so far. In the present paper, the impact of CFRC plates on required power, total sintering energy, and temperature distribution was investigated by experiments and by Finite Element Modeling (FEM). The study was performed at a temperature of 1000 °C with a graphite dummy mimicking an SPS setup. A rather moderate influence of CFRC plates on power and energy demand was found. Furthermore, the cooling stage becomes considerably longer. However, the application of CFRC plates leads to a significant reduction in the axial temperature gradient. The comparative analysis of experimental and modeling results showed the good capability of the FEM method for prediction of temperature distribution and required electric current. However, a discrepancy between measured and calculated voltage and power was found. This issue must be further investigated, considering the influence of AC harmonics in the DC field.


2021 ◽  
Vol 8 (1) ◽  
pp. 130-136
Author(s):  
Roberto Spagnuolo

Abstract The stability check of masonry structures is a debated problem in Italy that poses serious problems for its extensive use. Indeed, the danger of out of plane collapse of masonry walls, which is one of the more challenging to evaluate, is traditionally addressed not using finite element models (FEM). The power of FEM is not properly used and some simplified method are preferred. In this paper the use of the thrust surface is suggested. This concept allows to to evaluate the eccentricity of the membrane stresses using the FEM method. For this purpose a sophisticated, layered, finite element with a no-tension material is used. To model a no-tension material we used the smeared crack method as it is not mesh-dependent and it is well known since the early ’80 in an ASCE Report [1]. The described element has been implemented by the author in the program Nòlian by Softing.


Sign in / Sign up

Export Citation Format

Share Document