Cosserat Modeling of Size Effects in Crystalline Solids

2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.

Author(s):  
R. D. List ◽  
J. P. O. Silberstein

AbstractA system of equations is derived for determining the elastic fields in an inclusion and its surrounding finite matrix when the inclusion suffers a physical change and, if not constrained by the matrix, would undergo a deformation . A method for obtaining the exact solution of these equations, when the matrix and inclusion have the same elastic constants, is described and the particular problem of the square inclusion in an infinite matrix solved.


1998 ◽  
Vol 529 ◽  
Author(s):  
T. Antretter ◽  
E D. Fischer

AbstractIn many composites consisting of hard and brittle inclusions embedded in a ductile matrix failure can be attributed to particle cleavage followed by ductile crack growth in the matrix. Both mechanisms are significantly sensitive towards the presence of residual stresses.On the one hand particle failure depends on the stress distribution inside the inclusion, which, in turn, is a function of various geometrical parameters such as the aspect ratio and the position relative to adjacent particles as well as the external load. On the other hand it has been observed that the absolute size of each particle plays a role as well and will, therefore, be taken into account in this work by means of the Weibull theory. Unit cells containing a number of quasi-randomly oriented elliptical inclusions serve as the basis for the finite element calculations. The numerical results are then correlated to the geometrical parameters defining the inclusions. The probability of fracture has been evaluated for a large number of inclusions and plotted versus the particle size. The parameters of the fitting curves to the resulting data points depend on the choice of the Weibull parameters.A crack tip opening angle criterion (CTOA) is used to describe crack growth in the matrix emanating from a broken particle. It turns out that the crack resistance of the matrix largely depends on the distance from an adjacent particle. Residual stresses due to quenching of the material tend to reduce the risk of particle cleavage but promote crack propagation in the matrix.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
J.-C. Cortés ◽  
L. Jódar ◽  
Francisco J. Solís ◽  
Roberto Ku-Carrillo

We introduce infinite matrix products including some of their main properties and convergence results. We apply them in order to extend to the matrix scenario the definition of the scalar gamma function given by an infinite product due to Weierstrass. A limit representation of the matrix gamma function is also provided.


Author(s):  
Yury A. Morozov

The aim of the work. The effect of the curvature of the rounding of torus surfaces during the formation of a cylindrical product (glass) is investigated, taking into account the plastic thinning of the deformable material at the end edges of the matrix and pressing punch. Methods. The existing scheme for determining the power parameters of sheet drawing is analyzed, based on the assumption of the implementation of some abstract stress state in the material; mainly conditional tensile strength. At the same time, the possibility of forming the product without destruction determines the obvious overestimation of the stress level. A mathematical model of the volumetric stress state of the metal is being developed, which makes it possible to assess the deformation and stress state during the formation of a cold-drawn product, i. e. the folding of the sheet blank along the end radius of the rounding of the pressing punch and the steady-state process of drawing the blank into the deformation zone with successive bending/straightening of the material along the edge of the matrix are considered. The level of radial stresses during folding and stretching of sheet material is estimated, taking into account its strain hardening and thinning, which determine the forming force. The obtained results will make it possible to simulate the stress-strain state of the metal during the development of sheet drawing technology: to establish the amount of thinning, to estimate the level of radial stresses in the formation of rounding of torus surfaces along the end edges of the matrix and the pressing punch, as well as to determine the power parameters of the formation, which will prevent the destruction of the pulled part, guaranteeing obtaining high-quality products and more accurately choosing the deforming equipment.


2003 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
T. Chen ◽  
C. H. Hsieh ◽  
P. C. Chuang

ABSTRACTA series solution is presented for a spherical inclusion embedded in an infinite matrix under a remotely applied uniform intensity. Particularly, the interface between the inclusion and the matrix is considered to be inhomegeneously bonded. We examine the axisymmetric case in which the interface parameter varies with the cone angle θ. Two kinds of imperfect interfaces are considered: an imperfect interface which models a thin interphase of low conductivity and an imperfect interface which models a thin interphase of high conductivity. We show that, by expanding the solutions of terms of Legendre polynomials, the field solution is governed by a linear set of algebraic equations with an infinite number of unknowns. The key step of the formulation relies on algebraic identities between coefficients of products of Legendre series. Some numerical illustrations are presented to show the correctness of the presented procedures. Further, solutions of the boundary-value problem are employed to estimate the effective conductivity tensor of a composite consisting of dispersions of spherical inclusions with equal size. The effective conductivity solely depends on one particular constant among an infinite number of unknowns.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


2019 ◽  
Vol 84 (3) ◽  
pp. 555-566
Author(s):  
Xu Wang ◽  
Liang Chen ◽  
Peter Schiavone

AbstractWe use conformal mapping techniques to solve the inverse problem concerned with an elastic non-elliptical harmonic inclusion in the vicinity of a rigid non-elliptical harmonic inclusion loaded by a couple when the surrounding matrix is subjected to remote uniform stresses. Both a size-independent complex loading parameter and a size-dependent real loading parameter are introduced as part of the solution procedure. The stress field inside the elastic inclusion is uniform and hydrostatic; the interfacial normal and tangential stresses as well as the hoop stress on the matrix side are uniform along each one of the two inclusion–matrix interfaces. The tangential stress along the interface of the elastic inclusion (free of external loading) vanishes, whereas that along the interface of the rigid inclusion (loaded by the couple) does not. A novel method is proposed to determine the area of the rigid inclusion.


1985 ◽  
Vol 29 ◽  
pp. 587-592
Author(s):  
K.K. Nielson ◽  
V.C. Rogers

Particle-size effects can cause significant errors in x-ray fluorescence (XRF) analysis of particulate materials. The effects are usually removed when samples are fused or dissolved to standardize the matrix for quantitative analysis. Recent improvements in numerical matrix corrections reduce the need to standardize the sample matrix via fusion or dissolution, particularly when the CEMAS method is used to estimate unmeasured light-element components of undefined materials for matrix calculations. A new method to correct for particle-size effects has therefore been examined to potentially avoid the need for destructive preparation of homogeneous samples.


Author(s):  
C. G. Lascarides ◽  
I. J. Maddox

Let A = (ank) be an infinite matrix of complex numbers ank (n, k = 1, 2,…) and X, Y two subsets of the space s of complex sequences. We say that the matrix A defines a (matrix) transformation from X into Y, and we denote it by writing A: X → Y, if for every sequence x = (xk)∈X the sequence Ax = (An(x)) is in Y, where An(x) = Σankxk and the sum without limits is always taken from k = 1 to k = ∞. The sequence Ax is called the transformation of x by the matrix A. By (X, Y) we denote the class of matrices A such that A: X → Y.


Sign in / Sign up

Export Citation Format

Share Document