Long-term effects of elevated CO2 on sour orange trees

Author(s):  
Bruce A. Kimball ◽  
Sherwood B. Idso
1996 ◽  
Vol 47 (12) ◽  
pp. 1941-1950 ◽  
Author(s):  
P. Schwanz ◽  
B.A. Kimball ◽  
S.B. Idso ◽  
D.L. Hendrix ◽  
A. Polle

Chemosphere ◽  
2003 ◽  
Vol 50 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.W. Leavitt ◽  
S.B. Idso ◽  
B.A. Kimball ◽  
J.M. Burns ◽  
A. Sinha ◽  
...  

2018 ◽  
Author(s):  
Amrit K Mishra

Rising carbon dioxide (CO2) concentrations in the atmosphere will increase the average pCO2 level in the world oceans, which will have a knock-on effect on the marine ecosystem. Coastal seagrass communities are predicted to benefit from the increase in CO2 levels, but long-term effects of elevated CO2 on seagrass communities are less understood. Population reconstruction techniques were used to investigate the population dynamics of Cymodocea nodosa meadows, exposed to long term elevated CO2 at volcanic seeps off Greece and Italy. Effect of elevated CO2 was noticed on the growth, morphometry, density, biomass and age structure at CO2 seeps than reference sites. Above to below ground biomass ratio of C. nodosa were higher at CO2 seeps. The shoot age and shoot longevity of plants were lower at seeps. The present recruitment (sampled year) of the seagrass were higher than long-term average recruitment of the communities near the seeps. Carbon to nitrogen ratios (%DW) and annual leaf production of C. nodosa were higher in leaves at seeps. This study suggests under long-term CO2 enrichment C. nodosa production increases, but the plant survival rate decreases because of other co-factors such as nutrient availability and trace metal toxicity. Therefore, along with high CO2 other factors must be taken into consideration while predicting effects of future CO2 concentrations.


2019 ◽  
Vol 16 (6) ◽  
pp. 1343-1360 ◽  
Author(s):  
Robert R. Bogue ◽  
Florian M. Schwandner ◽  
Joshua B. Fisher ◽  
Ryan Pavlick ◽  
Troy S. Magney ◽  
...  

Abstract. We explore the use of active volcanoes to determine the short- and long-term effects of elevated CO2 on tropical trees. Active volcanoes continuously but variably emit CO2 through diffuse emissions on their flanks, exposing the overlying ecosystems to elevated levels of atmospheric CO2. We found tight correlations (r2=0.86 and r2=0.74) between wood stable carbon isotopic composition and co-located volcanogenic CO2 emissions for two of three investigated species (Oreopanax xalapensis and Buddleja nitida), which documents the long-term photosynthetic incorporation of isotopically heavy volcanogenic carbon into wood biomass. Measurements of leaf fluorescence and chlorophyll concentration suggest that volcanic CO2 also has measurable short-term functional impacts on select species of tropical trees. Our findings indicate significant potential for future studies to utilize ecosystems located on active volcanoes as natural experiments to examine the ecological impacts of elevated atmospheric CO2 in the tropics and elsewhere. Results also point the way toward a possible future utilization of ecosystems exposed to volcanically elevated CO2 to detect changes in deep volcanic degassing by using selected species of trees as sensors.


2016 ◽  
Vol 97 ◽  
pp. 157-167 ◽  
Author(s):  
Clayton R. Butterly ◽  
Lori A. Phillips ◽  
Jennifer L. Wiltshire ◽  
Ashley E. Franks ◽  
Roger D. Armstrong ◽  
...  

2008 ◽  
Author(s):  
Michael C. Wiemann ◽  
David Kretschmann ◽  
Alan Rudie ◽  
Bruce A. Kimball ◽  
Sherwood B. Idso

Sign in / Sign up

Export Citation Format

Share Document