Toward metabolome-based 13C flux analysis: a universal tool for measuring in vivo metabolic activity

Author(s):  
Nicola Zamboni
2021 ◽  
Vol 71 ◽  
pp. 1-8
Author(s):  
Tomasz K Bednarski ◽  
Mohsin Rahim ◽  
Jamey D Young

2012 ◽  
Vol 287 (33) ◽  
pp. 27959-27970 ◽  
Author(s):  
Martin Rühl ◽  
Dominique Le Coq ◽  
Stéphane Aymerich ◽  
Uwe Sauer

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Diwei Zheng ◽  
Weihai Liu ◽  
Wenlin Xie ◽  
Guanyu Huang ◽  
Qiwei Jiang ◽  
...  

AbstractOsteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Although activator of HSP90 ATPase activity 1 (AHA1) is reported to be a potential oncogene, its role in osteosarcoma progression remains largely unclear. Since metabolism reprogramming is involved in tumorigenesis and cancer metastasis, the relationship between AHA1 and cancer metabolism is unknown. In this study, we found that AHA1 is significantly overexpressed in osteosarcoma and related to the prognosis of osteosarcoma patients. AHA1 promotes the growth and metastasis of osteosarcoma both in vitro and in vivo. Mechanistically, AHA1 upregulates the metabolic activity to meet cellular bioenergetic needs in osteosarcoma. Notably, we identified that isocitrate dehydrogenase 1 (IDH1) is a novel client protein of Hsp90-AHA1. Furthermore, the IDH1 protein level was positively correlated with AHA1 in osteosarcoma. And IDH1 overexpression could partially reverse the effect of AHA1 knockdown on cell growth and migration of osteosarcoma. Moreover, high IDH1 level was also associated with poor prognosis of osteosarcoma patients. This study demonstrates that AHA1 positively regulates IDH1 and metabolic activity to promote osteosarcoma growth and metastasis, which provides novel prognostic biomarkers and promising therapeutic targets for osteosarcoma patients.


2017 ◽  
Vol 38 (10) ◽  
pp. 1701-1714 ◽  
Author(s):  
Marta Lai ◽  
Bernard Lanz ◽  
Carole Poitry-Yamate ◽  
Jackeline F Romero ◽  
Corina M Berset ◽  
...  

In vivo 13C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13C-labeled glucose. Metabolic flux analysis of 13C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6-13C2]glucose for up to 5 h. 13C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (Vg = 0.16 ± 0.03 µmol/g/min) and neurons (VTCAn = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (VPC = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (VNT = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMRglc) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18F-fluorodeoxyglucose positron emission tomography (18FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13C direct detection with an unprecedented spatial resolution under [1,6-13C2]glucose infusion.


2021 ◽  
Author(s):  
Rossana de Aguiar Cordeiro ◽  
Bruno Nascimento da Silva ◽  
Ana Luiza Ribeiro de Aguiar ◽  
Livia Maria Galdino Pereira ◽  
Fernando Victor Monteiro Portela ◽  
...  

Abstract Invasive fungal infections (IFIs) are important worldwide health problem, affecting the growing population of immunocompromised patients. Although the majority of IFIs are caused by Candida spp., other fungal species have been increasingly recognized as relevant opportunistic pathogens. Trichosporon spp. are members of skin and gut human microbiota. Since 1980’s, invasive trichosporonosis has been considered a significant cause of fungemia in patients with hematological malignancies. As prolonged antibiotic therapy is an important risk factor for IFIs, the present study investigated if vancomycin enhances growth and virulence of Trichosporon. Vancomycin was tested against T. inkin (n = 6) and T. asahii (n = 6) clinical strains. Planktonic cells were evaluated for their metabolic activity and virulence against Caenorhabditis elegans. Biofilms were evaluated for metabolic activity, biomass production, amphotericin B tolerance, induction of persister cells, and ultrastructure. Vancomycin stimulated planktonic growth of Trichosporon spp., increased tolerance to AMB, and potentiates virulence against C. elegans. Vancomycin stimulated growth (metabolic activity and biomass) of Trichosporon spp. biofilms during all stages of development. The antibiotic increased the number of persister cells inside Trichosporon biofilms. These cells showed higher tolerance to AMB than persister cells from VAN-free biofilms. Microscopic analysis showed that VAN increased production of extracellular matrix and cells in T. inkin and T. asahii biofilms. These results suggest that antibiotic exposure may have a direct impact on the pathophysiology of opportunistic trichosporonosis in patients at risk. Lay abstract This study showed that the vancomycin stimulated Trichosporon growth, induced morphological and physiological changes on their biofilms, and also enhanced their in vivo virulence. Although speculative, the stimulatory effect of vancomycin on fungal cells should be considered in a clinical scenario.


2012 ◽  
Vol 79 (6) ◽  
pp. 1777-1786 ◽  
Author(s):  
M. Popova ◽  
D. P. Morgavi ◽  
C. Martin

ABSTRACTThe amount and nature of dietary starch are known to influence the extent and site of feed digestion in ruminants. However, how starch degradability may affect methanogenesis and methanogens along the ruminant's digestive tract is poorly understood. This study examined the diversity and metabolic activity of methanogens in the rumen and cecum of lambs receiving wheat or corn high-grain-content diets. Methane productionin vivoandex situwas also monitored.In vivodaily methane emissions (CH4g/day) were 36% (P< 0.05) lower in corn-fed lambs than in wheat-fed lambs.Ex situmethane production (μmol/h) was 4-fold higher for ruminal contents than for cecal contents (P< 0.01), while methanogens were 10-fold higher in the rumen than in the cecum (mcrAcopy numbers;P< 0.01). Clone library analysis indicated thatMethanobrevibacterwas the dominant genus in both sites. Diet induced changes at the species level, as theMethanobrevibacter millerae-M. gottschalkii-M. smithiiclade represented 78% of the sequences from the rumen of wheat-fed lambs and just about 52% of the sequences from the rumen of the corn-fed lambs. Diet did not affectmcrAexpression in the rumen. In the cecum, however, expression was 4-fold and 2-fold lower than in the rumen for wheat- and corn-fed lambs, respectively. Though we had no direct evidence for compensation of reduced rumen methane production with higher cecum methanogenesis, the ecology of methanogens in the cecum should be better considered.


Author(s):  
Rui Shang ◽  
Nathaniel Lal ◽  
ChaeSyng Lee ◽  
Yajie Zhai ◽  
Karanjit Puri ◽  
...  

Cardiac muscle utilizes multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favours glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signalling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA-sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, primary transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms in the absence of any in vivo confounding regulators of cardiac metabolism demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example diabetes.


Sign in / Sign up

Export Citation Format

Share Document