Cellular Mechanisms for Pollen Tube Growth Inhibition in Gametophytic Self-incompatibility

2006 ◽  
pp. 201-221 ◽  
Author(s):  
Barend H. J. de Graaf ◽  
Chris Lee ◽  
Bruce A. McClure ◽  
Noni (V. E.) Franklin-Tong
2013 ◽  
Vol 40 (No. 2) ◽  
pp. 65-71 ◽  
Author(s):  
D. Milatović ◽  
D. Nikolić ◽  
B. Krška

Self-(in)compatibility was tested in 40 new apricot cultivars from European breeding programmes. Pollen-tube growth in pistils from laboratory pollinations was analysed using the fluorescence microscopy. Cultivars were considered self-compatible if at least one pollen tube reached the ovary in the majority of pistils. Cultivars were considered self- incompatible if the growth of pollen tubes in the style stopped along with formation of characteristic swellings. Of the examined cultivars, 18 were self-compatible and 22 were self-incompatible. Fluorescence microscopy provides a relatively rapid and reliable method to determine self-incompatibility in apricot cultivars.      


2019 ◽  
Vol 20 (9) ◽  
pp. 2356 ◽  
Author(s):  
Shuangyan Chen ◽  
Junting Jia ◽  
Liqin Cheng ◽  
Pincang Zhao ◽  
Dongmei Qi ◽  
...  

Sheepgrass (Leymus chinensis (Trin.) Tzvel.) is an economically and ecologically important forage in the grass family. Self-incompatibility (SI) limits its seed production due to the low seed-setting rate after self-pollination. However, investigations into the molecular mechanisms of sheepgrass SI are lacking. Therefore, microscopic observation of pollen germination and pollen tube growth, as well as transcriptomic analyses of pistils after self- and cross-pollination, were performed. The results indicated that pollen tube growth was rapidly inhibited from 10 to 30 min after self-pollination and subsequently stopped but preceded normally after cross-pollination. Time course comparative transcriptomics revealed different transcriptome dynamics between self- and cross-pollination. A pool of SI-related signaling genes and pathways was generated, including genes related to calcium (Ca2+) signaling, protein phosphorylation, plant hormone, reactive oxygen species (ROS), nitric oxide (NO), cytoskeleton, and programmed cell death (PCD). A putative SI response molecular model in sheepgrass was presented. The model shows that SI may trigger a comprehensive calcium- and phytohormone-dominated signaling cascade and activate PCD, which may explain the rapid inhibition of self-pollen tube growth as observed by cytological analyses. These results provided new insight into the molecular mechanisms of sheepgrass (grass family) SI.


By cytophysiological methods, the self-incompatibility mechanism of the breeding system in Lilium longiflorum has been examined with particular reference to the synthesis, location and nature of the stylar factors involved in the control of pollen tube development. A ‘bioassay’ has been developed by which the effect of stylar extracts on pollen tube elongation may be investigated. With use of this system, a crude fraction of proteins from the stylar fluid has been shown to inhibit pollen tube growth only when protein fractions from ‘self’ styles are used. The proteins of this fraction have been analysed by thin-layer gel electrofocusing. Changes in the profiles thus obtained following selfing and a heat treatment known to inactivate the self-incompatibility response indicate a highly polarized glycoprotein to be an active component of the system. The various ways by which such a glycoprotein could control pollen tube elongation are considered in detail, and these events in Lilium are discussed in the light of our knowledge of other self-incompatibility systems operating in angiosperms.


HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 1056-1058 ◽  
Author(s):  
Julián Cuevas ◽  
Vito S. Polito

We investigated pollination and fruit set parameters in `Manzanillo' olive (Olea europaea L.) following self-pollination and pollination with `Sevillano', `Ascolano', and `Mission' pollen. Results of analyses and experiments conducted over 2 years in central California indicated that `Manzanillo' behaves as a self-incompatible cultivar (index of self-incompatibility = 0.22 to 0.24). Pollination with `Sevillano' resulted in a more than 4-fold increase in fruit set over self-pollination. When `Mission' or `Ascolano' pollen was used, there was no increase over self-pollinated samples. Analyses of pollen tube growth, fertilization, initial fruit set, and final fruit set were consistent with `Manzanillo' being considered as a self-incompatible cultivar cross-incompatible with `Mission' and `Ascolano'. Our results indicate that `Manzanillo' is likely to be more productive when interplanted with `Sevillano' rather than when planted without a pollinizer or with `Mission' or `Ascolano'.


Flora ◽  
2013 ◽  
Vol 208 (5-6) ◽  
pp. 390-399 ◽  
Author(s):  
Armine Asatryan ◽  
Noemi Tel-Zur

Sign in / Sign up

Export Citation Format

Share Document