Optimizing Viral and Non-Viral Gene Transfer Methods for Genetic Modification of Porcine Mesenchymal Stem Cells

Author(s):  
Maik Stiehler ◽  
Mogens Duch ◽  
Tina Mygind ◽  
Haisheng Li ◽  
Michael Ulrich-Vinther ◽  
...  
Soft Matter ◽  
2012 ◽  
Vol 8 (5) ◽  
pp. 1451-1459 ◽  
Author(s):  
Anandika Dhaliwal ◽  
Jonathan Lam ◽  
Maricela Maldonado ◽  
Clayton Lin ◽  
Tatiana Segura

2021 ◽  
pp. 1-6

Non-hematopoietic mesenchymal stem cells (MSCs) are widely used in regenerative medicine and tissue engineering as they possess multilineage differentiation potential and self-renewal properties. MSCs can be easily isolated from several tissues and expanded following standard cell culture procedures. MSCs have the capability of mobilization to the tumor site; so, they can automatically relocate to the tumor sites through their chemokine receptors following intravenous transplantation. In this respect, they can be used for MSC-based gene therapy. In this therapeutic technique, beneficial genes are inserted by viral and non-viral methods into MSCs that lead to transgene expression in them. Genetic modifications of MSCs have been widely studied and thoroughly investigated to further enhance their therapeutic efficacy. The current strategies of MSC-based therapies emphasize the incorporation of beneficial genes, which will enhance the therapeutic ability of MSCs and have better homing efficiency. Non-viral methods produce less toxicity and immunogenicity compared to viral gene delivery methods and thus represent a promising and efficient tool for the genetic engineering of MSCs. Several non-viral gene delivery strategies have been developed in recent decades, and some of them have been used for MSCs modification. This mini review provides an overview of current gene delivery approaches used for the genetic modification of MSCs with beneficial genes including viral and non-viral vectors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2099-2099
Author(s):  
Jakub Tolar ◽  
Mark Osborn ◽  
Scott Bell ◽  
Lily Xia ◽  
Megan Riddle ◽  
...  

Abstract MAPC are non-hematopoietic stem cells with the capacity to form most, if not all, cell types of the body. To date, the observations of homing of the MAPC have been limited to post mortem analyses. As MAPC may be useful in cellular therapies, our goal was to map their biodistribution in live organisms. To determine the real-time organ-specific homing pattern of donor MAPC, MAPC (from BM of C57BL/6J-rosa26 mice) were co-nucleofected with cDNAs encoding the red fluorescent protein DsRed2 and luciferase, using the Sleeping Beauty (SB) transposon system. Non-viral gene transfer mediated by SB is potentially advantageous to viral gene transfer because transposons may be less immunogenic since no viral proteins are present, and they are relatively easy to produce. DsRed2 and luciferase genes were cloned into plasmid vectors containing the transposase recognition sequences flanking the reporter genes (pT/CAGGS-DsRed2; pT/CAGGS-Luciferase). MAPC (106) were co-nucleofected (Amaxa, setting T-20, buffer T) with 5mcg of each marker plasmid and the SB transposase plasmid (p/CMV-HSB2) at a 1:50 ratio. 19% of MAPC expressed DsRed2 7 days after nucleofection. The MAPC were FACS sorted (1 cell per well) for cells with the highest DsRed2 expression. All MAPC tested expressed both DsRed2 and luciferase, suggesting that co-nucleofection is an efficient means of delivery of two plasmids. Two transgenic MAPC clones selected for further analysis were confirmed to be euploid by cytogenetic analysis, and maintained differentiation potential into the three germ layers. To verify transgene integration by transposition, the genomic sites of transposon integration were determined using splinkerette PCR. In the genome of MAPC clone 1, DsRed2 transposed in two sites on chromosome 5. One integration site (5qA3) was in the 3′ untranslated region of activin receptor interacting protein 1 (Acvrinp1). In clone 2 DsRed2 transposed into a single site on chromosome 10, in an intron of a gene termed SHPRH, which encodes a putative protein with SNF2/helicase and PHD-finger domains. To investigate the real time kinetics of MAPC population after infusion, 5 x 106 DsRed2 and luciferase positive MAPC (clone 2) were infused via tail vein into 8-week-old Rag2/IL-2Rgc−/− mice (T-, B- and NK-immunodeficient mice were used as a recipient to minimize the likelihood that the host would reject donor MAPC). Using whole body imaging (Xenogen) we were able to follow the distribution of the luciferase-marked MAPC over a period of 10 weeks. In addition, using DsRed2 expression the donor MAPC-derived cells in whole lung and in lung cryosections were identified. In summary, we show for the first time stable gene expression in adult stem cells using Sleeping Beauty transposon mediated non-viral gene transfer. These results show that MAPC-based cellular therapies can be monitored in vivo and suggest that transposon-based technology may be an attractive alternative to viral based gene delivery and therapy.


2009 ◽  
Vol 33 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Yu Kang ◽  
Xiao-Yan Zhang ◽  
Wei Jiang ◽  
Chao-Qun Wu ◽  
Chun-Mei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document