Closed loop scheduling and control of One-of-a-Kind Production

Author(s):  
Y. L. Tu ◽  
H. Holm ◽  
U. B. Rasmussen
Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1623
Author(s):  
Federico Lozano Santamaria ◽  
Sandro Macchietto

Heat exchanger networks subject to fouling are an important example of dynamic systems where performance deteriorates over time. To mitigate fouling and recover performance, cleanings of the exchangers are scheduled and control actions applied. Because of inaccuracy in the models, as well as uncertainty and variability in the operations, both schedule and controls often have to be revised to improve operations or just to ensure feasibility. A closed-loop nonlinear model predictive control (NMPC) approach had been previously developed to simultaneously optimize the cleaning schedule and the flow distribution for refinery preheat trains under fouling, considering their variability. However, the closed-loop scheduling stability of the scheme has not been analyzed. For practical closed-loop (online) scheduling applications, a balance is usually desired between reactivity (ensuring a rapid response to changes in conditions) and stability (avoiding too many large or frequent schedule changes). In this paper, metrics to quantify closed-loop scheduling stability (e.g., changes in task allocation or starting time) are developed and then included in the online optimization procedure. Three alternative formulations to directly include stability considerations in the closed-loop optimization are proposed and applied to two case studies, an illustrative one and an industrial one based on a refinery preheat train. Results demonstrate the applicability of the stability metrics developed and the ability of the closed-loop optimization to exploit trade-offs between stability and performance. For the heat exchanger networks under fouling considered, it is shown that the approach proposed can improve closed-loop schedule stability without significantly compromising the operating cost. The approach presented offers the blueprint for a more general application to closed-loop, model-based optimization of scheduling and control in other processes.


2019 ◽  
Vol 58 (26) ◽  
pp. 11485-11497 ◽  
Author(s):  
Jannatun Nahar ◽  
Su Liu ◽  
Yawen Mao ◽  
Jinfeng Liu ◽  
Sirish L. Shah

Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


2020 ◽  
Vol 53 (2) ◽  
pp. 10791-10796
Author(s):  
C.G. Palacín ◽  
C. Vilas ◽  
A.A. Alonso ◽  
José L. Pitarch ◽  
C. de Prada

Author(s):  
E. Georgiou ◽  
J. Dai

The motivation for this work is to develop a platform for a self-localization device. Such a platform has many applications for the autonomous maneuverable non-holonomic mobile robot classification, which can be used for search and rescue or for inspection devices where the robot has a desired path to follow but because of an unknown terrain, the device requires the ability to make ad-hoc corrections to its movement to reach its desire path. The mobile robot is modeled using Lagrangian d’Alembert’s principle considering all the possible inertias and forces generated, and are controlled by restraining movement based on the holonomic and non-holonomic constraints of the modeled vehicle. The device is controlled by a PD controller based on the vehicle’s holonomic and non-holonomic constraints. An experiment was setup to verify the modeling and control structure’s functionality and the initial results are promising.


1994 ◽  
Vol 116 (2) ◽  
pp. 244-249 ◽  
Author(s):  
J. Hu ◽  
J. H. Vogel

A dynamic model of injection molding developed from physical considerations is used to select PID gains for pressure control during the packing phase of thermo-plastic injection molding. The relative importance of various aspects of the model and values for particular physical parameters were identified experimentally. The controller gains were chosen by pole-zero cancellation and root-locus methods, resulting in good control performance. Both open and closed-loop system responses were predicted and verified, with good overall agreement.


Sign in / Sign up

Export Citation Format

Share Document