Dynamic Modeling and Control of Packing Pressure in Injection Molding

1994 ◽  
Vol 116 (2) ◽  
pp. 244-249 ◽  
Author(s):  
J. Hu ◽  
J. H. Vogel

A dynamic model of injection molding developed from physical considerations is used to select PID gains for pressure control during the packing phase of thermo-plastic injection molding. The relative importance of various aspects of the model and values for particular physical parameters were identified experimentally. The controller gains were chosen by pole-zero cancellation and root-locus methods, resulting in good control performance. Both open and closed-loop system responses were predicted and verified, with good overall agreement.

Author(s):  
Shiming Duan ◽  
Jun Ni ◽  
A. Galip Ulsoy

Piecewise affine (PWA) systems belong to a subclass of switched systems and provide good flexibility and traceability for modeling a variety of nonlinear systems. In this paper, application of the PWA system framework to the modeling and control of an automotive all-wheel drive (AWD) clutch system is presented. The open-loop system is first modeled as a PWA system, followed by the design of a piecewise linear (i.e., switched) feedback controller. The stability of the closed-loop system, including model uncertainty and time delays, is examined using linear matrix inequalities based on Lyapunov theory. Finally, the responses of the closed-loop system under step and sine reference signals and temperature disturbance signals are simulated to illustrate the effectiveness of the design.


2011 ◽  
Vol 35 (4) ◽  
pp. 543-557 ◽  
Author(s):  
Mohammad A. Khosravi ◽  
Hamid D. Taghirad

In this paper modeling and control of cable driven redundant parallel manipulators with flexible cables, are studied in detail. Based on new results, in fully constrained cable robots, cables can be modeled as axial linear springs. Considering this assumption the system dynamics formulation is developed using Lagrange approach. Since in this class of robots, all the cables should remain in tension for the whole workspace, the notion of internal forces are introduced and incorporated in the proposed control algorithm. The control algorithm is developed in cable coordinates in which the internal forces play an important role. Finally, asymptotic stability of the closed loop system is analyzed through Lyapunov theorem, and the performance of the proposed algorithm is studied by simulations.


2001 ◽  
Author(s):  
W. Colmenares ◽  
S. Cristea ◽  
C. de Prada ◽  
O. Perez ◽  
A. Alonso ◽  
...  

Abstract In this report, we present results of the modeling and control of a hydraulic pilot process, currently under construction at the Laboratory of Automatic of the ISA department of Universidad de Valladolid. The system is described by linear inequalities involving both, real and integer variables and the dynamical and logical decisions are heavily inter dependent. Hence the characterization as a Mixed Logical Dynamical system. Two MLD models are featured and both are suited to apply a Model Based Predictive Control strategy to command the system. Results of a simulation of the closed loop system are feature.


Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


Author(s):  
E. Georgiou ◽  
J. Dai

The motivation for this work is to develop a platform for a self-localization device. Such a platform has many applications for the autonomous maneuverable non-holonomic mobile robot classification, which can be used for search and rescue or for inspection devices where the robot has a desired path to follow but because of an unknown terrain, the device requires the ability to make ad-hoc corrections to its movement to reach its desire path. The mobile robot is modeled using Lagrangian d’Alembert’s principle considering all the possible inertias and forces generated, and are controlled by restraining movement based on the holonomic and non-holonomic constraints of the modeled vehicle. The device is controlled by a PD controller based on the vehicle’s holonomic and non-holonomic constraints. An experiment was setup to verify the modeling and control structure’s functionality and the initial results are promising.


Author(s):  
Latchezar L. Ganovski ◽  
Paul Fisette ◽  
Jean-Claude Samin

Abstract The modeling and control of redundantly actuated closed-loop mechanical systems is considered in the present work an illustrated with a planar four-bar mechanism and a 3-D parallel manipulator. A specific trajectory involving singular configurations is generated and then followed using the overactuation. To generate the trajectory, four-degree polynomial functions are considered. The loop constraint equations are solved by means of the Newton-Raphson numerical algorithm. In order to describe the dynamics of the systems, the Lagrange multiplier technique is used. The multipliers are eliminated via the coordinate partitioning method. To overcome the underdetermined state of the system induced by the overactuation, additional equations that represent a specific condition for smoothly passing through the singularities are applied. Further, to control the redundantly actuated mechanisms a feed-forward controller is chosen. The robustness of the controller is investigated through several cases of simulation including random noise applied to the controller input and instantaneous loading.


2014 ◽  
Vol 635-637 ◽  
pp. 1443-1446
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

This paper investigates the problems of stabilization and control for time-delay switched fuzzy systems using output feedback controller. Based on the linear matrix inequality (LMI) technique, multiple Lyapunov method is used to obtain a sufficient condition for the existence of the controller for the output feedback. Then an algorithm is constructed to transform the sufficient condition into a LMI form, thus obtaining a method for designing the controller. The designed controller guarantees the closed-loop system to be asympototically stable. A numerical example is given to show the effectiveness of our method.


2012 ◽  
Vol 488-489 ◽  
pp. 269-273 ◽  
Author(s):  
G.S. Dangayach ◽  
Deepak Kumar

In the present era, competition gets tougher; there is more pressure on manufacturing sectors to improve quality and customer satisfaction while decreasing cost and increasing productivity. These can be achieved by using modern quality management systems and process improvement techniques to reduce the process variability and driven waste within manufacturing process using effective application of statistical tools. Taguchi technique is well known technique to solve industrial problems. This technique is fast and can pinpoint the chief causes and variations. Plastic injection molding is suitable for mass production articles since complex geometries can be obtained in a single production step. The difficulty in setting optimal process conditions may cause defects in parts, such as shrinkage and warpage. In this paper, optimal injection molding conditions for minimum shrinkage were determined by the Taguchi design of experiment (DOE) approach. Polypropylene (PP) was injected in circular shaped specimens under various processing parameters: melt temperature, injection pressure, packing pressure and packing time. S/N ratios were utilized for determining the optimal set of parameters. According to the results, 2400 C of melt temperature, 75 MPa of injection pressure, 50 MPa of packing pressure and 15 sec. of packing time gave minimum shrinkage of 0.951% for PP. Statically the most significant parameter was melt temperature for the PP. Injection pressure had the least effect on the shrinkage. The defect rate was reduced from 14% to 3%.


Sign in / Sign up

Export Citation Format

Share Document