In Vitro Models of the Alveolar Epithelial Barrier

Author(s):  
Carsten Ehrhardt ◽  
Michael Laue ◽  
Kwang-Jin Kim
2011 ◽  
Vol 77 (3) ◽  
pp. 398-406 ◽  
Author(s):  
Andrea D. Lehmann ◽  
Nicole Daum ◽  
Michael Bur ◽  
Claus-Michael Lehr ◽  
Peter Gehr ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2356
Author(s):  
Marta Trevisan ◽  
Silvia Riccetti ◽  
Alessandro Sinigaglia ◽  
Luisa Barzon

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1807
Author(s):  
Nicholas J. Braun ◽  
Rachel M. Galaska ◽  
Maggie E. Jewett ◽  
Kristen A. Krupa

The incorporation of engineered nanoparticles (NPs) into everyday consumer goods, products, and applications has given rise to the field of nanotoxicology, which evaluates the safety of NPs within biological environments. The unique physicochemical properties of NPs have made this an insurmountable challenge, as their reactivity and variable behavior have given rise to discrepancies between standard cell-based in vitro and animal in vivo models. In this study, enhanced in vitro models were generated that retained the advantages of traditional cell cultures, but incorporated the modifications of (1) inclusion of an activated immune element and (2) the presence of physiologically-relevant dynamic flow. Following verification that the human alveolar epithelial and macrophage (A549/U937) co-culture could be successfully sustained under both static and dynamic conditions, these cultures, in addition to a standard A549 static model, were challenged with 10 nm citrate coated silver NPs (AgNPs). This work identified a reshaping of the AgNP-cellular interface and differential biological responses following exposure. The presence of dynamic flow modified cellular morphology and reduced AgNP deposition by approximately 20% over the static exposure environments. Cellular toxicity and stress endpoints, including reactive oxygen species, heat shock protein 70, and secretion of pro-inflammatory cytokines, were found to vary as a function of both cellular composition and flow conditions; with activated macrophages and fluid flow both mitigating the severity of AgNP-dependent bioeffects. This work highlights the possibility of enhanced in vitro systems to assess the safety of engineered NPs and demonstrates their effectiveness in elucidating novel NP-cellular interactions and toxicological profiles.


2004 ◽  
Vol 286 (1) ◽  
pp. L106-L111 ◽  
Author(s):  
Andres Pelaez ◽  
Rabih I. Bechara ◽  
Pratibha C. Joshi ◽  
Lou Ann S. Brown ◽  
David M. Guidot

Chronic alcohol abuse increases the risk of developing acute lung injury approximately threefold in septic patients, and ethanol ingestion for 6 wk in rats impairs alveolar epithelial barrier function both in vitro and in vivo. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a trophic factor for the alveolar epithelium, and a recent phase II clinical study suggests that GM-CSF therapy decreases sepsis-mediated lung injury. Therefore, we hypothesized that GM-CSF treatment could improve ethanol-mediated defects in the alveolar epithelium during acute stresses such as endotoxemia. In this study, we determined that recombinant rat GM-CSF improved lung liquid clearance (as reflected by lung tissue wet:dry ratios) in ethanol-fed rats anesthetized and then challenged with 2 ml of saline via a tracheostomy tube. Furthermore, GM-CSF treatment improved lung liquid clearance and decreased epithelial protein leak in both control-fed and ethanol-fed rats after 6 h of endotoxemia induced by Salmonella typhimurium lipopolysaccharide given intraperitoneally, but with the greater net effect seen in the ethanol-fed rats. Our previous studies indicate that chronic ethanol ingestion decreases lung liquid clearance by increasing intercellular permeability. Consistent with this, GM-CSF treatment in vitro decreased permeability of alveolar epithelial monolayers derived from both control-fed and ethanol-fed rats. As in the endotoxemia model in vivo, the effect of GM-CSF was most dramatic in the ethanol group. Together, these results indicate that GM-CSF treatment has previously unrecognized effects in promoting alveolar epithelial barrier integrity and that these salutary effects may be particularly relevant in the setting of chronic alcohol abuse.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 367 ◽  
Author(s):  
Simone Ladel ◽  
Patrick Schlossbauer ◽  
Johannes Flamm ◽  
Harald Luksch ◽  
Boris Mizaikoff ◽  
...  

Background: The epithelial layer of the nasal mucosa is the first barrier for drug permeation during intranasal drug delivery. With increasing interest for intranasal pathways, adequate in vitro models are required. Here, porcine olfactory (OEPC) and respiratory (REPC) primary cells were characterised against the nasal tumour cell line RPMI 2650. Methods: Culture conditions for primary cells from porcine nasal mucosa were optimized and the cells characterised via light microscope, RT-PCR and immunofluorescence. Epithelial barrier function was analysed via transepithelial electrical resistance (TEER), and FITC-dextran was used as model substance for transepithelial permeation. Beating cilia necessary for mucociliary clearance were studied by immunoreactivity against acetylated tubulin. Results: OEPC and REPC barrier models differ in TEER, transepithelial permeation and MUC5AC levels. In contrast, RPMI 2650 displayed lower levels of MUC5AC, cilia markers and TEER, and higher FITC-dextran flux rates. Conclusion: To screen pharmaceutical formulations for intranasal delivery in vitro, translational mucosal models are needed. Here, a novel and comprehensive characterisation of OEPC and REPC against RPMI 2650 is presented. The established primary models display an appropriate model for nasal mucosa with secreted MUC5AC, beating cilia and a functional epithelial barrier, which is suitable for long-term evaluation of sustained release dosage forms.


2015 ◽  
Vol 3 ◽  
pp. 38-45 ◽  
Author(s):  
Raymond Derk ◽  
Donna C. Davidson ◽  
Amruta Manke ◽  
Todd A. Stueckle ◽  
Yon Rojanasakul ◽  
...  

2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

Sign in / Sign up

Export Citation Format

Share Document