Methods and Process Optimization for Large-Scale CAR T Expansion Using the G-Rex Cell Culture Platform

Author(s):  
Josh Ludwig ◽  
Mark Hirschel
Author(s):  
Jakub Zdarta ◽  
Katarzyna Jankowska ◽  
Karolina Bachosz ◽  
Oliwia Degórska ◽  
Karolina Kaźmierczak ◽  
...  

Abstract Purpose of Review In the presented review, we have summarized recent achievements on the use of immobilized oxidoreductases for biodegradation of hazardous organic pollutants including mainly dyes, pharmaceuticals, phenols, and bisphenols. In order to facilitate process optimization and achievement of high removal rates, effect of various process conditions on biodegradation has been highlighted and discussed. Recent Findings Current reports clearly show that immobilized oxidoreductases are capable of efficient conversion of organic pollutants, usually reaching over 90% of removal rate. Further, immobilized enzymes showed great recyclability potential, allowing their reuse in numerous of catalytic cycles. Summary Collected data clearly indicates immobilized oxidoreductases as an efficient biocatalytic tools for removal of hazardous phenolic compounds, making them a promising option for future water purification. Data shows, however, that both immobilization and biodegradation conditions affect conversion efficiency; therefore, process optimization is required to achieve high removal rates. Nevertheless, we have demonstrated future trends and highlighted several issues that have to be solved in the near-future research, to facilitate large-scale application of the immobilized oxidoreductases in wastewater treatment.


Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 1165-1173 ◽  
Author(s):  
Shu Kondo ◽  
Matthew Booker ◽  
Norbert Perrimon

RNAi-mediated gene knockdown in Drosophila melanogaster is a powerful method to analyze loss-of-function phenotypes both in cell culture and in vivo. However, it has also become clear that false positives caused by off-target effects are prevalent, requiring careful validation of RNAi-induced phenotypes. The most rigorous proof that an RNAi-induced phenotype is due to loss of its intended target is to rescue the phenotype by a transgene impervious to RNAi. For large-scale validations in the mouse and Caenorhabditis elegans, this has been accomplished by using bacterial artificial chromosomes (BACs) of related species. However, in Drosophila, this approach is not feasible because transformation of large BACs is inefficient. We have therefore developed a general RNAi rescue approach for Drosophila that employs Cre/loxP-mediated recombination to rapidly retrofit existing fosmid clones into rescue constructs. Retrofitted fosmid clones carry a selection marker and a phiC31 attB site, which facilitates the production of transgenic animals. Here, we describe our approach and demonstrate proof-of-principle experiments showing that D. pseudoobscura fosmids can successfully rescue RNAi-induced phenotypes in D. melanogaster, both in cell culture and in vivo. Altogether, the tools and method that we have developed provide a gold standard for validation of Drosophila RNAi experiments.


2017 ◽  
Vol 42 (17) ◽  
pp. 12339-12354 ◽  
Author(s):  
U. Cardella ◽  
L. Decker ◽  
J. Sundberg ◽  
H. Klein

2020 ◽  
Vol 72 (2) ◽  
pp. 259-269 ◽  
Author(s):  
Zhibing Weng ◽  
Jian Jin ◽  
ChunHua Shao ◽  
Huazhong Li

Author(s):  
M. Bensellam ◽  
C. Bassens ◽  
M. Toallati ◽  
S. Lowagie ◽  
J. Werenne

Author(s):  
N. B. Finter ◽  
A. J. M. Garland ◽  
R. C. Telling

1986 ◽  
Vol 84 (1) ◽  
pp. 237-251
Author(s):  
R.J. Hill ◽  
T. Kroft ◽  
M. Zuker ◽  
I.C. Smith

A method is described, based on the phagocytosis of colloidal ferrite particles, which gives highly synchronous populations of Tetrahymena thermophila. To ensure a successful synchrony, the cell culture doubling time, the limits of the phagocytic period and the distribution of cell stages must first be determined. Once these parameters are known, synchrony can be achieved under a variety of growth conditions and with cultures ranging in volume from a few millilitres to 12 litres or more. The main advantages of the method are that the apparatus required is simple, large volumes of cells can be handled easily, and the synchronous populations can be prepared within a few hours. In principle, the method should be applicable to any cell population in which phagocytosis occurs discontinuously over the cell cycle.


1989 ◽  
Vol 37 (8) ◽  
pp. 2251-2262 ◽  
Author(s):  
I. S. Dairanieh ◽  
M. Absi-Halabi ◽  
S. Lahalih ◽  
T. Al-Khalid

Sign in / Sign up

Export Citation Format

Share Document