Virus-Induced Gene Silencing of Cell Wall Genes in Flax (Linum usitatissimum)

Author(s):  
Maxime Chantreau ◽  
Godfrey Neutelings
2010 ◽  
Vol 3 (5) ◽  
pp. 818-833 ◽  
Author(s):  
Xiaohong Zhu ◽  
Sivakumar Pattathil ◽  
Koushik Mazumder ◽  
Amanda Brehm ◽  
Michael G. Hahn ◽  
...  

2015 ◽  
Vol 13 (9) ◽  
pp. 1312-1324 ◽  
Author(s):  
Maxime Chantreau ◽  
Brigitte Chabbert ◽  
Sylvain Billiard ◽  
Simon Hawkins ◽  
Godfrey Neutelings

2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Wang ◽  
Wanting Yu ◽  
Lingfang Ran ◽  
Zhong Chen ◽  
Chuannan Wang ◽  
...  

Gibberellins (GAs) promote secondary cell wall (SCW) development in plants, but the underlying molecular mechanism is still to be elucidated. Here, we employed a new system, the first internode of cotton, and the virus-induced gene silencing method to address this problem. We found that knocking down major DELLA genes via VIGS phenocopied GA treatment and significantly enhanced SCW formation in the xylem and phloem of cotton stems. Cotton DELLA proteins were found to interact with a wide range of SCW-related NAC proteins, and virus-induced gene silencing of these NAC genes inhibited SCW development with downregulated biosynthesis and deposition of lignin. The findings indicated a framework for the GA regulation of SCW formation; that is, the interactions between DELLA and NAC proteins mediated GA signaling to regulate SCW formation in cotton stems.


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (12) ◽  
Author(s):  
Lokanadha Gunupuru ◽  
Shahin Ali ◽  
Fiona Doohan ◽  
Steven Scofield

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Sign in / Sign up

Export Citation Format

Share Document