Magnetic Nanoparticles as Delivery Systems to Penetrate the Blood-Brain Barrier

Author(s):  
Joan Estelrich ◽  
Maria Antònia Busquets
2018 ◽  
Vol 19 (10) ◽  
pp. 3224 ◽  
Author(s):  
Shafq Al-azzawi ◽  
Dhafir Masheta ◽  
Anna Guildford ◽  
Gary Phillips ◽  
Matteo Santin

Alzheimer’s disease (AD) is a progressive brain disorder and age-related disease characterised by abnormal accumulation of β-amyloid (Aβ). The development of drugs to combat AD is hampered by the lack of therapeutically-active molecules able to cross the blood-brain barrier (BBB). It is agreed that specifically-designed carriers, such as dendrimers, could support the drug penetration across the BBB. The aim of this study was to design biocompatible and biodegradable dendrimeric delivery systems able to carry Flurbiprofen (FP), as drug for AD treatment, across the BBB and liberate it at the target tissue. These dendrons were synthesised using solid-phase peptide synthesis method and characterised by mass spectrometry and fourier-transform infrared spectroscopy (FTIR). The results revealed successful synthesis of dendrons having FP been integrated during the synthesis at their branching ends. Cytotoxicity assays demonstrated the biocompatibility of the delivery systems, whereas HPLC analysis showed high percentages of permeability across an in vitro BBB model for FP-integrated dendrons. Results also revealed the efficiency of drug conjugates on the γ-secretase enzyme in target cells with evidence of eventual drug release by hydrolysis of the carrier. This study demonstrates that the coupling of FP to dendrimeric delivery systems can successfully be achieved during the synthesis of the poly(epsilon-lysine) macromolecules to improve the transport of the active drug across the BBB.


2021 ◽  
pp. 118278
Author(s):  
Maliheh Dayani ◽  
Salar Khaledian ◽  
Arad Fatahian ◽  
Reza Fatahian ◽  
Fleming Martinez

Author(s):  
Apostolos A. Gkountas ◽  
Nickolas D. Polychronopoulos ◽  
George N. Sofiadis ◽  
Evangelos G. Karvelas ◽  
Leonidas A. Spyrou ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Yogesh Garg ◽  
Deepak N Kapoor ◽  
Abhishek Kumar Sharma ◽  
Amit Bhatia

Abstract: The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jun Liu ◽  
Meng Li ◽  
Yong Huang ◽  
Li Zhang ◽  
Wei Li ◽  
...  

Clinically, surgery assisted by chemotherapy is the most effective treatment of cancer. But from our clinical observation, the median survival of patients with glioblastoma is still not so good with only 15-16 months. The low therapeutic index is mainly due to the blood-brain barrier (BBB) which significantly hindered the chemotherapeutic drug accumulation in tumor tissue. One main composition of the BBB is astrocyte, which contains a lipophilic cell membrane, which prevents more than 98% of small-molecule drugs from entering the brain. Previously, we found that the nanogel with passive targeting function can increase the BBB penetration ability, which indicates that it could be used to overcome the above mentioned in vivo obstacles which promoted drug accumulation in the tumor. In this study, thermosensitive targeted nanogel delivery systems (DPPC) with cell-penetrating peptides (CPP) are introduced onto the particle surface for active astrocyte breaking. The hydrodynamic radius of DPPC is around 300 nm, the potential is about 0-5 mV, and the TEM and DLS studies further confirm its well spherical morphology and uniform distribution. The DPPC is verified as the biocompatible carriers for further application by cell viability tests. The in vitro-constructed BBB model successfully proves that DPPC can efficiently penetrate the BBB, which is attributed to both the temperature-sensitive passive targeting and the active CPP penetration. Consequently, the intracellular doxorubicin (DOX) promotes such functional DPPC at the relatively high temperature inside tumor microenvironment (TME) (~42°C), which obviously improves intratumor drug accumulation and tumor cell-killing effects. The dual-targeted nanogel delivery systems designed in this study provides a more effective strategy for the treatment of glioma.


Author(s):  
Iara Baldim ◽  
Adriana M. Ribeiro ◽  
João Dias-Ferreira ◽  
Wanderley P. Oliveira ◽  
Francisco M. Gama ◽  
...  

Author(s):  
Viana Manrique-Suárez ◽  
Nelson Santiago Vispo ◽  
Oliberto Sánchez Ramos

: The main obstacle to biopharmaceutical delivery in therapeutic concentration into the brain for treating neurological disorders is the presence of the blood-brain barrier (BBB). The physiological process of receptor-mediated transcytosis (RMT) to transport cargo through the brain endothelial cells toward brain parenchyma has prompted researchers to search for non-natural ligands that can be used to transport drugs across the BBB. Conjugation of drugs to RMT ligands would be an effective strategy for its delivery to the central nervous system. An attractive approach to identify novel transcytosing ligands is the screening by phage display combinatorial libraries. The main technology strength lies in the large variety of exogenous peptides or proteins displayed on the phage's surface. Here, we provide a mini-review of phage display technology using in vitro and in vivo BBB models for the development of peptide-mediated drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document