Timing of the last Mediterranean Sea Black Sea connection from isostatic models and regional sea-level data

Author(s):  
Kurt Lambeck ◽  
Dorit Sivan ◽  
Anthony Purcell
Author(s):  
Nikolay V. Esin ◽  
Nikolay I. Esin ◽  
Igor S. Podymov ◽  
Anna V. Lifanchuk ◽  
Irina V. Melnikova

The article calculates the freshwater balance of the ancient Black and Caspian seas and estimates the volume of water flowing from the Black Sea to the Mediterranean during the melting of glaciers. It is shown that during this period up to 855 km3/year of freshwater is discharged into the Mediterranean Sea, which is involved in the formation of sea level. A comparison of calculations and geological data showed that there are no signs of the influx of salty ocean water into the Akchagyl Sea. It was also shown that water from the ocean cannot flow up since the sea level was below sea level.


2020 ◽  
Author(s):  
Alessio Rovere ◽  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
...  

<p>We surveyed the elevation and age (<sup>14</sup>C) of paleo sea-level indicators in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points from fossil microatolls, and we compare our dataset with both previously published proxies and sea-level predictions from a set of 54 Glacial Isostatic Adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We then investigate the implications of our data and models in terms of vertical land movements in the study area, with two main results.</p><p>First, data from the heavily populated island of Barrang Lompo are significantly lower (ca. 80 cm) than those at all the other islands. In absence of instrumental data (e.g., GPS or tide gauges) in any of the islands, we advance the hypothesis that this difference may be due to groundwater extraction and loading of buildings on Barrang Lompo, that would cause this island to subside at rates in the order of ~3-11 mm/a.</p><p>Second, Common Era data (0-400 a BP) seem to indicate that the islands in the archipelago may be affected by tectonically-driven vertical land motions in the order of -0.88±0.61 mm/a (1-sigma), albeit slight uplift cannot be excluded. Different assumptions on vertical land motions affect, in turn, the assessment of which GIA model shows the best match with Late Holocene (ca. 4-5 ka) sea level data. Tectonic stability or slight uplift would favor iterations of ANICESELEN (De Boer et al., 2014), while subsidence would cause the sea level data to fit better with iterations of ICE-6G (Peltier et al., 2015).</p><p><strong>References</strong></p><p>De Boer, Bas, Paolo Stocchi, and Roderik Van De Wal. A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications." Geoscientific Model Development 7.5 (2014): 2141-2156.</p><p>Peltier, W. R., D. F. Argus, and R. Drummond. Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120.1 (2015): 450-487.</p><p><strong>Acknowledgments</strong></p><p>This project is funded by SEASCHANGE (RO-5245/1-1) and HAnsea (MA-6967/2-1) from the Deutsche Forschungsgemeinschaft (DFG), part of the Special Priority Program (SPP)-1889 "Regional Sea Level Change and Society". Parts of this study are under review in Climate of the Past (https://www.clim-past-discuss.net/cp-2019-63/)</p>


1965 ◽  
Vol 30 (4) ◽  
pp. 460-469 ◽  
Author(s):  
Bernard W. Powell

AbstractArchaeological, geological, and biological observations, including a quantitative midden analysis, of a shell midden on the Connecticut shore support the inference that a Woodland manifestation, probably of the East River aspect, was preceded by an Archaic, possibly Transitional, horizon. The deposit was formed during a lower sea stand; both global and regional sea-level data are cited in support of chronological placement.


Geomorphology ◽  
2009 ◽  
Vol 107 (1-2) ◽  
pp. 3-9 ◽  
Author(s):  
Micha Klein ◽  
Michal Lichter

Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1473-1487
Author(s):  
Patrick Wagner ◽  
Claus W. Böning

Abstract. Strong regional sea-level trends, mainly related to basin-wide wind stress anomalies, have been observed in the western tropical Pacific over the last 3 decades. Analyses of regional sea level in the densely populated regions of the neighbouring Australasian Mediterranean Sea (AMS; also called tropical Asian seas) are hindered by its complex topography and respective studies are sparse. We used a series of global eddy-permitting ocean models, including a high-resolution configuration that resolves the AMS with 120∘ horizontal resolution, forced by a comprehensive atmospheric forcing product over 1958–2016 to characterize the patterns and magnitude of decadal sea-level variability in the AMS. The nature of this variability is elucidated further by sensitivity experiments with interannual variability restricted to either the momentum or buoyancy fluxes, building on an experiment employing a repeated-year forcing without interannual variability in all forcing components. Our results suggest that decadal fluctuations of the El Niño–Southern Oscillation (ENSO) account for over 80 % of the variability in all deep basins of the region, except for the central South China Sea (SCS). Changes related to the Pacific Decadal Oscillation (PDO) are most pronounced in the shallow Arafura and Timor seas and in the central SCS. On average, buoyancy fluxes account for less than 10 % of decadal SSH variability, but this ratio is highly variable over time and can reach values of up to 50 %. In particular, our results suggest that buoyancy flux forcing amplifies the dominant wind-stress-driven anomalies related to ENSO cycles. Intrinsic variability is mostly negligible except in the SCS, where it accounts for 25 % of the total decadal SSH variability.


Author(s):  
Fabrizio Antonioli ◽  
Stefano Furlani ◽  
Paolo Montagna ◽  
Paolo Stocchi ◽  
Lucio Calcagnile ◽  
...  

This study presents a world review as well as new additional data in form of submerged speleothems that are used for paleo sea level reconstructions. Speleothems significantly contributed to the understanding of the global and regional sea level variations during the Middle and Late Quaternary. The studied speleothems cover the last 1.4 Myr and are focused mainly on Marine Isotope Stages (MIS) 1, 2, 3, 5.1, 5.3, 5.5, 7.1, 7.2, 7.3 and 7.5. Results reveal that submerged speleothems represent extraordinary archives providing detailed information on former sea level changes. We present also new results from stalactites collected in central Mediterranean sea, at Favignana and Ustica islands (Sicily, Italy), both characterized by continental, phreatic or marine layers. The study and analysis of the latter speleothems provide results of great interest for relative sea level changes over the last 1000 years.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 77
Author(s):  
Fabrizio Antonioli ◽  
Stefano Furlani ◽  
Paolo Montagna ◽  
Paolo Stocchi

The investigation of submerged speleothems for sea level studies has made significant contributions to the understanding of the global and regional sea level variations during the Middle and Late Quaternary. This has especially been the case for the Mediterranean Sea, where more than 300 submerged speleothems sampled in 32 caves have been analysed so far. Here, we present a comprehensive review of the results obtained from the study of submerged speleothems since 1978. The studied speleothems cover the last 1.4 Myr and are mainly focused on Marine Isotope Stages (MIS) 1, 2, 3, 5.1, 5.3, 5.5, 7.1, 7.2, 7.3, and 7.5. The results reveal that submerged speleothems represent extraordinary archives providing accurate information on former sea level changes. New results from a stalagmite collected at Palinuro (Campania, Italy) and characterized by marine overgrowth are also reported. The measured elevations of speleothems are affected by the local response to glacial and hydro-isostatic adjustment (GIA), and thus might significantly deviate from the global eustatic signal. A comparison of the ages and altitude values of the Mediterranean speleothems and flowstone from the Bahamas with local GIA provides a new scenario for MIS 5 and 7 sea level reconstructions.


1984 ◽  
Vol 21 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Dean A. McManus ◽  
Joe S. Creager

Sea-level changes in Beringia are especially significant because they affect the migration of land plants and animals between Asia and North America, and marine plants and animals between the Pacific and Arctic oceans. Previous studies of cores from the Bering and Chukchi shelves produced sea-level curves. Evaluation of these data suggests that nine of the radiocarbon-dated estimates of sea-level position are most reliable for the time period 19,000 to 10,000 yr B.P. The trend of these nine points is proposed as the basis for a regional sea-level curve for central Beringia. Constraints on the data must be noted, however, by anyone using them.


Sign in / Sign up

Export Citation Format

Share Document