Holocene sea-level changes in the Spermonde Archipelago, Indonesia: implications for vertical land movements

Author(s):  
Alessio Rovere ◽  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
...  

<p>We surveyed the elevation and age (<sup>14</sup>C) of paleo sea-level indicators in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points from fossil microatolls, and we compare our dataset with both previously published proxies and sea-level predictions from a set of 54 Glacial Isostatic Adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We then investigate the implications of our data and models in terms of vertical land movements in the study area, with two main results.</p><p>First, data from the heavily populated island of Barrang Lompo are significantly lower (ca. 80 cm) than those at all the other islands. In absence of instrumental data (e.g., GPS or tide gauges) in any of the islands, we advance the hypothesis that this difference may be due to groundwater extraction and loading of buildings on Barrang Lompo, that would cause this island to subside at rates in the order of ~3-11 mm/a.</p><p>Second, Common Era data (0-400 a BP) seem to indicate that the islands in the archipelago may be affected by tectonically-driven vertical land motions in the order of -0.88±0.61 mm/a (1-sigma), albeit slight uplift cannot be excluded. Different assumptions on vertical land motions affect, in turn, the assessment of which GIA model shows the best match with Late Holocene (ca. 4-5 ka) sea level data. Tectonic stability or slight uplift would favor iterations of ANICESELEN (De Boer et al., 2014), while subsidence would cause the sea level data to fit better with iterations of ICE-6G (Peltier et al., 2015).</p><p><strong>References</strong></p><p>De Boer, Bas, Paolo Stocchi, and Roderik Van De Wal. A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications." Geoscientific Model Development 7.5 (2014): 2141-2156.</p><p>Peltier, W. R., D. F. Argus, and R. Drummond. Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120.1 (2015): 450-487.</p><p><strong>Acknowledgments</strong></p><p>This project is funded by SEASCHANGE (RO-5245/1-1) and HAnsea (MA-6967/2-1) from the Deutsche Forschungsgemeinschaft (DFG), part of the Special Priority Program (SPP)-1889 "Regional Sea Level Change and Society". Parts of this study are under review in Climate of the Past (https://www.clim-past-discuss.net/cp-2019-63/)</p>

2019 ◽  
Author(s):  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
Tilo Schöne ◽  
...  

Abstract. Indonesia is a country composed of several thousand islands, many of them small, low-lying and densely inhabited. These are, in particular, subject to high risk of inundation due to future relative sea level changes. The Spermonde Archipelago, off the coast of Southwest Sulawesi, consists of more than 100 small islands. This study presents a dataset of 24 sea-level index points from fossil microatolls, surveyed on five islands in the Spermonde Archipelago and compares these new results with published data from the same region and with relative sea level predictions from different Glacial Isostatic Adjustment (GIA) models. The newly surveyed fossil microatolls are located around the islands of Tambakulu, Suranti (both ~ 60 km offshore of Makassar city), Bone Batang and Kodingareng Keke (both located in the center of the Archipelago) and Sanrobengi (located ~ 20 km south-southwest of Makassar). Results from the near- and mid-shelf islands indicate that relative sea level between 4 to 6 ka BP was less than one meter above present sea level. The only exception to this pattern is the heavily populated island of Barrang Lompo, where we record a significant subsidence when compared to the other islands. These new results support the conclusions from a previous dataset and are relevant to constrain late Holocene ice melting scenarios. Samples from the two outer islands (Tambakulu and Suranti) yielded ages spanning the Common Era that represent, to our knowledge, the first reported for the entire Southeast Asian region.


The Holocene ◽  
2019 ◽  
Vol 29 (11) ◽  
pp. 1679-1693
Author(s):  
Thomas M Cronin ◽  
Megan K Clevenger ◽  
Neil E Tibert ◽  
Tammy Prescott ◽  
Michael Toomey ◽  
...  

We reconstructed the last 10,000 years of Holocene relative sea-level rise (RSLR) from sediment core records near Chesapeake Bay, eastern United States, including new marsh records from the Potomac and Rappahannock Rivers, Virginia. Results show mean RSLR rates of 2.6 mm yr−1 from 10 to 8 kilo-annum (ka) due to combined final ice-sheet melting during deglaciation and glacio-isostatic adjustment (GIA subsidence). Mean RSLR rates from ~6 ka to present were 1.4 mm yr−1 due mainly to GIA, consistent with other East Coast marsh records and geophysical models. However, a progressively slower mean rate (<1.0 mm yr−1) characterized the last 1000 years when a multi-century-long period of tidal marsh development occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) in the Chesapeake Bay region and other East Coast marshes. This decrease was most likely due to climatic and glaciological processes and, correcting for GIA, represents a fall in global mean sea level (GMSL) near the end of Holocene Neoglacial cooling. These pre-historical climate- and GIA-driven Chesapeake Bay sea-level changes contrast sharply with those based on Chesapeake Bay tide-gauge rates (3.1–4.5 mm yr−1) (back to 1903). After subtracting the GIA subsidence component, these rates can be attributed to long-term (millennial) global factors of accelerated ocean thermal expansion (~1.0 mm yr−1) and mass loss from alpine glaciers and Greenland and Antarctic Ice Sheets (1.5–2.0 mm yr−1).


2020 ◽  
Vol 16 (4) ◽  
pp. 1187-1205 ◽  
Author(s):  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
Tilo Schöne ◽  
...  

Abstract. The Spermonde Archipelago, off the coast of southwest Sulawesi, consists of more than 100 small islands and hundreds of shallow-water reef areas. Most of the islands are bordered by coral reefs that grew in the past in response to paleo relative sea-level changes. Remnants of these reefs are preserved today in the form of fossil microatolls. In this study, we report the elevation, age, and paleo relative sea-level estimates derived from fossil microatolls surveyed in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points, and we compare our dataset with both previously published proxies and with relative sea-level predictions from a set of 54 glacial isostatic adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We use our new data and models to discuss Late Holocene (0–6 ka) relative sea-level changes in our study area and their implications in terms of modern relative sea-level estimates in the broader South and Southeast Asia region.


2021 ◽  
Author(s):  
Reyko Schachtschneider ◽  
Jan Saynisch-Wagner ◽  
Volker Klemann ◽  
Meike Bagge ◽  
Maik Thomas

Abstract. Glacial isostatic adjustment is largely governed by rheological properties of the Earth's mantle. Large mass redistributions in the ocean-cryosphere system and the subsequent response of the visco-elastic Earth have led to dramatic sea level changes in the past. This process is ongoing and in order to understand and predict current and future sea level changes the knowledge of mantle properties such as viscosity is essential. In this study we present a method to obtain estimates of mantle viscosities by assimilation of relative sea level data into a visco-elastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three layer earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. In two scenarios we investigate the dependence of the ensemblebehavior on the ensemble initialization and observation uncertainties and show that the recovery is successful if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. We then successfully apply the method to two special cases that are relevant for the assimilation of real observations: 1) using observations taken from a single region only, here Laurentide and Fennoscandia, respectively, and 2) using only observations from the last 10 kyrs.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 77
Author(s):  
Fabrizio Antonioli ◽  
Stefano Furlani ◽  
Paolo Montagna ◽  
Paolo Stocchi

The investigation of submerged speleothems for sea level studies has made significant contributions to the understanding of the global and regional sea level variations during the Middle and Late Quaternary. This has especially been the case for the Mediterranean Sea, where more than 300 submerged speleothems sampled in 32 caves have been analysed so far. Here, we present a comprehensive review of the results obtained from the study of submerged speleothems since 1978. The studied speleothems cover the last 1.4 Myr and are mainly focused on Marine Isotope Stages (MIS) 1, 2, 3, 5.1, 5.3, 5.5, 7.1, 7.2, 7.3, and 7.5. The results reveal that submerged speleothems represent extraordinary archives providing accurate information on former sea level changes. New results from a stalagmite collected at Palinuro (Campania, Italy) and characterized by marine overgrowth are also reported. The measured elevations of speleothems are affected by the local response to glacial and hydro-isostatic adjustment (GIA), and thus might significantly deviate from the global eustatic signal. A comparison of the ages and altitude values of the Mediterranean speleothems and flowstone from the Bahamas with local GIA provides a new scenario for MIS 5 and 7 sea level reconstructions.


The Holocene ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 1491-1502
Author(s):  
Greg T Rushby ◽  
Geoff T Richards ◽  
W Roland Gehrels ◽  
William P Anderson ◽  
Mark D Bateman ◽  
...  

Accurate Holocene relative sea-level curves are vital for modelling future sea-level changes, particularly in regions where relative sea-level changes are dominated by isostatically induced vertical land movements. In North Wales, various glacial isostatic adjustment (GIA) models predict a mid-Holocene relative sea-level highstand between 4 and 6 ka, which is unsubstantiated by any geological sea-level data but affects the ability of geophysical models to model accurately past and future sea levels. Here, we use a newly developed foraminifera-based sea-level transfer function to produce a 3300-year-long late-Holocene relative sea-level reconstruction from a salt marsh in the Malltraeth estuary on the south Anglesey coast in North Wales. This is the longest continuous late-Holocene relative sea-level reconstruction in Northwest Europe. We combine this record with two new late-Holocene sea-level index points (SLIPs) obtained from a freshwater marsh at Rhoscolyn, Anglesey, and with previously published regional SLIPs, to produce a relative sea-level record for North Wales that spans from ca. 13,000 BP to the present. This record leaves no room for a mid-Holocene relative sea-level highstand in the region. We conclude that GIA models that include a mid-Holocene sea-level highstand for North Wales need revision before they are used in the modelling of past and future relative sea-level changes around the British Isles.


1984 ◽  
Vol 21 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Dean A. McManus ◽  
Joe S. Creager

Sea-level changes in Beringia are especially significant because they affect the migration of land plants and animals between Asia and North America, and marine plants and animals between the Pacific and Arctic oceans. Previous studies of cores from the Bering and Chukchi shelves produced sea-level curves. Evaluation of these data suggests that nine of the radiocarbon-dated estimates of sea-level position are most reliable for the time period 19,000 to 10,000 yr B.P. The trend of these nine points is proposed as the basis for a regional sea-level curve for central Beringia. Constraints on the data must be noted, however, by anyone using them.


Author(s):  
fabrizio antonioli ◽  
Stefano Furlani ◽  
Paolo Montagna ◽  
Paolo Stocchi

The investigation of submerged speleothems for sea level studies has made significant contributions to the understanding of the global and regional sea level variations during the Middle and Late Quateranry. This has been especially the case for the Mediterranean Sea, where more than 300 submerged speleothems sampled in 32 caves have been analysed so far. Here, we present a comprehensive review of the results obtained from the study of submerged speleothems since 1978. The studied speleothems cover the last 1.4 Ma and are focused mainly on Marine Isotope Stages (MIS) 1, 2, 3, 5.1, 5.3, 5.5, 7.1, 7.2, 7.3 and 7.5. Results reveal that submerged speleothems represent extraordinary archives providing accurate information on former sea level changes, also considering that the Mediterranean Sea is devoid of any tropical corals since the Miocene. New results from a stalagmite collected at Palinuro (Campania, Italy) characterized by marine overgrowth are also reported. The measured elevations of speleothems are contaminated by the local response to glacial- and hydro-isostatic adjustment (GIA), and thus might significantly deviate from the global eustatic signal. Age and altitude comparation between Mediterranean speleothems, flowstone from Bahamas with local GIA provide a new scenario for MIS 5 and 7 sea level reconstrutions.


1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


Sign in / Sign up

Export Citation Format

Share Document