Genomics For Improvement Of Rosaceae Temperate Tree Fruit

Author(s):  
Pere Arús ◽  
Susan Gardiner
Keyword(s):  
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 548a-548 ◽  
Author(s):  
D.M. Glenn ◽  
G. Puterka ◽  
T. Baugher ◽  
T. Unruh ◽  
S. Drake

Hydrophobic particle film technology (HPF) is a developing pest control system for tree fruit production systems. Studies were established in Chile, and Washington, Pennsylvania, and West Virginia in the United States, to evaluate the effect of HPF technology on tree fruit yield and quality. Studies in Chile, Washington, and West Virginia demonstrated increased photosynthetic rate at the leaf level. Yield was increased in peaches (Chile) and apples (West Virginia), and fruit size was increased in apples (Washington and Pennsylvania). Increased red color in apple was demonstrated at all sites with reduced russetting and `Stayman' cracking in Pennsylvania. HPF technology appears to be an effective tool in reducing water and heat stress in tree fruit resulting in increased fruit quality.


2021 ◽  
Author(s):  
Hanna Ihli ◽  
Ronja Seegers ◽  
Etti Winter ◽  
Brian Chiputwa ◽  
Anja Gassner

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 419
Author(s):  
James Christopher Bergh ◽  
William R. Morrison ◽  
Jon W. Stallrich ◽  
Brent D. Short ◽  
John P. Cullum ◽  
...  

The invasive Halyomorpha halys invades crop fields from various bordering habitats, and its feeding on crops has caused significant economic losses. Thus, H. halys is considered a perimeter-driven threat, and research on alternative management tactics against it has focused on intervention at crop edges. Woodlands adjacent to crop fields contain many hosts of H. halys and are therefore considered “riskiest” in terms of pest pressure and crop injury. However, tree fruit orchards in the Mid-Atlantic, USA, are often bordered on one or more sides by woodlands and other habitats, including other tree fruit blocks, and field crops. Monitoring H. halys using pheromone traps has most often focused on the crop–woodland interface, but the relative effects of woodlands and other habitats bordering orchards on pest pressure and crop injury have not been examined. A two-year study comparing seasonal captures of H. halys and fruit injury among different habitats bordering commercial apple and peach orchards in the Mid-Atlantic revealed that while woodland borders often posed the greatest risk, other border habitats also contributed significantly to captures and injury in numerous instances. The relevance of these findings to refining and optimizing perimeter-based monitoring and management approaches for H. halys is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tobin Simonetti ◽  
Kari Peter ◽  
Yi Chen ◽  
Qing Jin ◽  
Guodong Zhang ◽  
...  

A 2-year longitudinal study of three tree fruit packinghouses was conducted to determine the prevalence and distribution of Listeria monocytogenes. Samples were collected from 40 standardized non-food-contact surface locations six different times over two 11-month production seasons. Of the 1,437 samples collected, the overall prevalence of L. monocytogenes over the course of the study was 17.5%. Overall prevalence did not differ significantly (p > 0.05) between each year. However, values varied significantly (p ≤ 0.05) within each production season following packing activity levels; increasing in the fall, peaking in early winter, and then decreasing through spring. L. monocytogenes was most often found in the packing line areas, where moisture and fruit debris were commonly observed and less often in dry cold storage and packaging areas. Persistent contamination was attributed to the inability of water drainage systems to prevent moisture accumulation on floors and equipment during peak production times and uncontrolled employee and equipment traffic throughout the facility. This is the first multiyear longitudinal surveillance study to compare L. monocytogenes prevalence at standardized sample sites common to multiple tree fruit packinghouses. Recommendations based on our results will help packinghouse operators to identify critical areas for inclusion in their L. monocytogenes environmental monitoring programs.


2009 ◽  
Vol 102 (3) ◽  
pp. 1133-1140 ◽  
Author(s):  
Anne L. Nielsen ◽  
George C. Hamilton

Soil Science ◽  
1959 ◽  
Vol 88 (1) ◽  
pp. 59 ◽  
Author(s):  
JAMES S. SHOEMAKER ◽  
BENJAMIN J. E. TESKEY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document