Phytohormone Regulation of Cotton Fiber Development In Vitro

Author(s):  
Barbara A. Triplett ◽  
Hee Jin Kim ◽  
Doug Hinchliffe ◽  
Sing-Hoi Sze ◽  
Peggy Thaxton ◽  
...  
1992 ◽  
Vol 101 (3) ◽  
pp. 561-577
Author(s):  
ROBERT W. SEAGULL

A quantitative electron microscopic (E/M) study of the changes in microtubule arrays and wall microfibril orientation has been done on in vitro grown cotton fibers. Microtubules change orientation during cotton fiber development. During fiber initiation and early elongation, microtubules have a generally random orientation. Microtubules re-orient into shallow pitched helices as elongation and primary wall deposition continue, and into steeply pitched helices during secondary wall deposition. Accompanying the changes in orientation are increases in microtubule length, number, proximity to the plasmalemma and a decreased variability in orientation of the microtubules. Based on these observations, three pivotal stages in microtubule patterns were identified during fiber development: (1) the transition between fiber initiation and elongation, where microtubules develop a shallow pitched helical orientation; (2) the transition between primary and secondary wall synthesis, where microtubules abruptly shift orientation to a steeply pitched helical pattern; and (3) early in secondary wall synthesis, where there is a four fold increase in microtubule number. Microfibrils exhibit changes in orientation similar to the microtubules; however significant differences were found when the precise orientations of microtubules and microfibrils were compared. During secondary wall synthesis, wall microfibrils exhibit some variability in orientation due to inter-fibril bundling, thus indicating that components of the wall may also influence final microfibril orientation.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 128 ◽  
Author(s):  
Haron Salih ◽  
Shoupu He ◽  
Hongge Li ◽  
Zhen Peng ◽  
Xiongming Du

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 457 ◽  
Author(s):  
Pieter Kwak ◽  
Qin Wang ◽  
Xu Chen ◽  
Cheng Qiu ◽  
Zhi Yang

1991 ◽  
Vol 95 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Candace H. Haigler ◽  
Nunna Rama Rao ◽  
Eric M. Roberts ◽  
Ji-Ying Huang ◽  
Dan R. Upchurch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document