scholarly journals A Pivotal Role of Hormones in Regulating Cotton Fiber Development

2019 ◽  
Vol 10 ◽  
Author(s):  
Guanghui Xiao ◽  
Peng Zhao ◽  
Yu Zhang
2010 ◽  
Vol 57 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Wenbin Liao ◽  
Juan Zhang ◽  
Nanfei Xu ◽  
Ming Peng

1986 ◽  
Vol 5 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Vrinda S. Thaker ◽  
Sant Saroop ◽  
Pankaj P. Vaishnav ◽  
Yash Dev Singh

2020 ◽  
Author(s):  
Xiufang Zhang ◽  
Junfeng Cao ◽  
Chaochen Huang ◽  
Zishou Zheng ◽  
Xia Liu ◽  
...  

Abstract Background: Cotton fiber is a model system for studying plant cell development. At present, our understanding of cotton fiber development and the regulatory network is still primitive. Results: Here, we identify auxin response factor (ARF) genes in three cotton species: the tetraploid upland cotton G. hirsutum, which has 73 ARF genes, and its putative extent parental diploids G. arboreum and G. raimondii, which have 36 and 35 ARFs, respectively. Ka and Ks analyses revealed that in G. hirsutum ARF genes have undergone asymmetric evolution in the two subgenomes. The cotton ARFs can be classified into four phylogenetic clades and are actively expressed in young tissues. We demonstrate that GhARF2b, a homolog of the Arabidopsis AtARF2, was preferentially expressed in developing ovules and fibers. Overexpression of GhARF2b by a fiber specific promoter inhibited fiber cell elongation but promoted initiation and, conversely, its downregulation by RNAi of resulted in fewer but longer fiber. Conclusion: Our results uncover an important role of the ARF factor in modulating cotton fiber development at the early stage.


2020 ◽  
Vol 63 (12) ◽  
pp. 1905-1917
Author(s):  
Lingling Wang ◽  
Han Cheng ◽  
Fangjie Xiong ◽  
Shuya Ma ◽  
Lei Zheng ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiufang Zhang ◽  
Junfeng Cao ◽  
Chaochen Huang ◽  
Zishou Zheng ◽  
Xia Liu ◽  
...  

AbstractBackgroundCotton fiber is a model system for studying plant cell development. At present, the functions of many transcription factors in cotton fiber development have been elucidated, however, the roles of auxin response factor (ARF) genes in cotton fiber development need be further explored.ResultsHere, we identify auxin response factor (ARF) genes in three cotton species: the tetraploid upland cottonG. hirsutum, which has 73 ARF genes, and its putative extent parental diploidsG. arboreumandG. raimondii, which have 36 and 35 ARFs, respectively. Ka and Ks analyses revealed that inG. hirsutum ARFgenes have undergone asymmetric evolution in the two subgenomes. The cotton ARFs can be classified into four phylogenetic clades and are actively expressed in young tissues. We demonstrate thatGhARF2b, a homolog of the ArabidopsisAtARF2, was preferentially expressed in developing ovules and fibers. Overexpression ofGhARF2bby a fiber specific promoter inhibited fiber cell elongation but promoted initiation and, conversely, its downregulation by RNAi resulted in fewer but longer fiber. We show that GhARF2b directly interacts with GhHOX3 and represses the transcriptional activity of GhHOX3 on target genes.ConclusionOur results uncover an important role of the ARF factor in modulating cotton fiber development at the early stage.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 128 ◽  
Author(s):  
Haron Salih ◽  
Shoupu He ◽  
Hongge Li ◽  
Zhen Peng ◽  
Xiongming Du

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.


Sign in / Sign up

Export Citation Format

Share Document