X-ray Scattering for Bio-Molecule Structure Characterization

Author(s):  
David M. Tiede ◽  
Xiaobing Zuo
1994 ◽  
Vol 8 (6) ◽  
pp. 397-404 ◽  
Author(s):  
Dimas R. Vollet ◽  
JoséCarlos D. Macedo ◽  
Yvonne P. Mascarenhas

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1624
Author(s):  
Atsushi Takahara ◽  
Yuji Higaki ◽  
Tomoyasu Hirai ◽  
Ryohei Ishige

Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1325-C1325
Author(s):  
Hiroyasu Masunaga ◽  
Hiroki Ogawa ◽  
Akihiko Fujiwara ◽  
Masaki Takata ◽  
Atsushi Takahara ◽  
...  

Polymer materials have hierarchal structure in the very wide range of scale. It is well known that the property is dependent on the hierarchical structure. In order to improve the performance of the materials, clarifying the hierarchical structure in a wide range and the feed back to the manufacturing process are important. However, it is difficult to clarify the hierarchical heterogeneous structure of polymer materials using only single method. Therefore the combination of microbeam small- and wide- angle X-ray scattering (SAXS/WAXS) is useful for evaluation of the hierarchical heterogeneous structural of polymer materials. The BL03XU, in alias, FSBL, in SPring-8 was constructed by consortium of industrial and academic groups and has been used from 20101),2). Structure characterization of advanced materials in the industrial field has been carried out using microbeam SAXS/WAXS method. In addition to the description of the SAXS/WAXS measurement system at BL03XU, we will report on the local structural evaluation of carbon fiber (CF). A hierarchal heterogeneous structure of CFs was visualized in the space resolution of 1 μm using a microbeam and an X-ray imaging technique. The image contrasts were identified by the difference in peak positions corresponding to the void size, the peak width corresponding to the crystallite size, and intensities corresponding to the amount of crystallites and voids. The X-ray scattering images of high-modulus CF are shown in a figure. Nanometer-size voids estimated by SAXS are abundant in the center of a fiber, on the other hand, the crystallite is abundant in the vicinity of a surface was revealed. It is suggested that the voids were generated near the center of the fiber to relax the strain during the crystallization process from the surface during the graphitization of fibers. We succeeded in visualizing the distribution of voids and crystallite of a few nanometers, which cannot be observed by an X-ray transmission imaging method.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


1992 ◽  
Vol 2 (6) ◽  
pp. 899-913 ◽  
Author(s):  
Patrick Davidson ◽  
Elisabeth Dubois-Violette ◽  
Anne-Marie Levelut ◽  
Brigitte Pansu

Sign in / Sign up

Export Citation Format

Share Document