Estimation of Forest Canopy Nitrogen Concentration

Author(s):  
Marie-Louise Smith ◽  
David Y. Hollinger ◽  
Scott Ollinger
2012 ◽  
Vol 4 (6) ◽  
pp. 1651-1670 ◽  
Author(s):  
Poonsak Miphokasap ◽  
Kiyoshi Honda ◽  
Chaichoke Vaiphasa ◽  
Marc Souris ◽  
Masahiko Nagai

HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1252-1259 ◽  
Author(s):  
A. Bar-Tal ◽  
B. Aloni ◽  
L. Karni ◽  
R. Rosenberg

The objective of this research was to study the effects of N concentration and N-NO3: N-NH4 ratio in the nutrient solution on growth, transpiration, and nutrient uptake of greenhouse-grown pepper in a Mediterranean climate. The experiment included five total N levels (0.25 to 14 mmol·L-1, with a constant N-NO3: N-NH4 ratio of 4) and five treatments of different N-NO3: N-NH4 ratios (0.25 to 4, with a constant N concentration of 7 mmol·L-1). Plants were grown in an aero-hydroponic system in a climate-controlled greenhouse. The optimum N concentrations for maximum stem and leaf dry matter (DM) production were in the range of 8.0 to 9.2 mmol·L-1. The optimum N-NO3: N-NH4 ratio for maximal stem DM production was 3.5. The optimum value of N concentration for total fruit DM production was 9.4 mmol·L-1. Fruit DM production increased linearly with increasing N-NO3: N-NH4 ratio in the range studied. The N concentration, but not N source, affected leaf chlorophyll content. Shorter plants with more compacted canopies were obtained as the N-NO3: N-NH4 ratio decreased. The effect of N concentration on transpiration was related to its effect on leaf weight and area, whereas the effect of a decreasing N-NO3: N-NH4 ratio in reducing transpiration probably resulted from the compacted canopy. Nitrogen uptake increased as the N concentration in the solution increased. Decreasing the N-NO3: N-NH4 ratio increased the N uptake, but sharply decreased the uptake of cations, especially Ca.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4123
Author(s):  
Lu Liu ◽  
Zhigong Peng ◽  
Baozhong Zhang ◽  
Zheng Wei ◽  
Nana Han ◽  
...  

Crop nitrogen monitoring techniques, particularly choosing sensitive monitoring bands and suitable monitoring models, have great significance both in theory and in practice for achieving non-destructive monitoring of nitrogen concentration and accurate management of water and fertilizer in large-scale areas. In this study, a lysimeter experiment was carried out to examine the characteristics of canopy spectral reflectance variation of summer corn under different fertilization levels. The relationship between canopy spectral reflectance and nitrogen concentration was investigated, based on which sensitive bands for the corn canopy nitrogen monitoring were selected and a suitable spectral index model was determined. The results suggest that under different fertilization levels, the canopy spectral reflectance of summer corn decreases with the increase of the canopy nitrogen concentration in the visible light band, but varies in the opposite direction in the near-infrared band, with a premium put on a higher correlation between the spectral reflectance of the characteristic bands and their first derivatives and the canopy nitrogen concentration. The most sensitive bands for monitoring the canopy nitrogen concentration using spectral reflectance and its first derivative are found to be 762 nm and 726 nm and the correlation coefficients are 0.550 and 0.795, respectively. The optimal band combination, generated by multivariate stepwise regression analysis, is composed of 762 nm, 944 nm and 957 nm bands. From the 55 reported spectral index models of crop nitrogen concentration monitoring, the most suitable index model, NDRE, is chosen such that this index model has the highest correlation with the canopy nitrogen concentration in summer corn. This model has a significant positive correlation with the canopy nitrogen concentration at each growth period, and the correlation coefficient is up to 0.738 during the whole growth period. Spectral monitoring models of canopy nitrogen concentration are constructed using sensitive bands, and a combination of bands and the spectral index, suggesting that these models perform well in monitoring. The models arranged in descending order of simulation accuracy are as follows: the suitable spectral index model, the optimal band combination model, the sensitive band reflectance first derivative model, the sensitive band reflectance model. The determination coefficients are 0.754, 0.711, 0.639 and 0.306, respectively.


Sign in / Sign up

Export Citation Format

Share Document