hoop pine
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 0)

H-INDEX

18
(FIVE YEARS 0)

2020 ◽  
pp. 1-5
Author(s):  
Parikshit Kumar ◽  
S. C. Sati ◽  
Kapil Khulbe ◽  
Prabha Pant ◽  
Amrendra Nath Tripathi ◽  
...  


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 4655-4671
Author(s):  
Christopher J. Fitzgerald ◽  
Robert L. McGavin

Blended species plywood blocks comprising of 24 different veneer configurations of naturally durable white cypress pine and non-durable hoop pine were exposed to the subterranean termite Coptotermes acinaciformis in a field trial in Australia. Three thicknesses of cypress (1.8, 2.8, and 3.0 mm) and hoop pine (1.0, 1.5, and 3.0 mm) veneer were included. Blocks were assessed for termite damage using a visual damage rating and mass loss measurement. Blocks using all hoop pine veneers received substantial damage; however, blocks that had cypress face and back veneers had improved termite resistance, particularly for the 1.0-mm hoop pine core veneers. When cypress longbands were blended with hoop pine crossbands that created alternating layers, minimal damage was sustained in the hoop pine veneers; however, the damage increased with increasing hoop pine veneer thickness. All cypress veneers received essentially no termite damage, and cypress veneer thickness did not influence the severity of hoop pine veneer damage. The trial indicated that the plywood made with hoop pine core veneers, cypress pine face, and back veneers offered some termite resistance if the hoop pine veneer thickness was kept thin. Alternating cypress and hoop pine further improved the termite resistance.



Zootaxa ◽  
2019 ◽  
Vol 4613 (3) ◽  
pp. 596
Author(s):  
ROBERT S. ANDERSON

Eurhamphus pancinii n. sp. is described based on a series of specimens collected in West Papua, in the Arfak Mountains and on Yapen Island. The only other species in the genus is Eurhamphus fasciculatus Shuckard known from New South Wales northwards into Queensland in Australia. The new species is distinguished from E. fasciculatus by the pronotum and elytra with the glabrous raised areas between the rows of scales very narrow, and elytra with sutural and interstria 3 low and evenly rounded throughout length, elytra in profile not humped towards base (both sexes), and in males by a shorter, less strongly dorsally granulate rostrum, front and middle tibia with inner margins with a very small subapical tooth, and inner edge of front tibia with only a few short, subapical hairs. Eurhamphus fasciculatus is associated with Hoop Pine, Araucaria cunninghamii and although no plant associations are available for specimens of the new species it is expected to be similarly associated with Araucaria. 



Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 825
Author(s):  
Ju-Pei Shen ◽  
Maryam Esfandbod ◽  
Steve A. Wakelin ◽  
Gary Bacon ◽  
Qiaoyun Huang ◽  
...  

Tree and grass species coexist in many ecosystems worldwide and support multiple ecosystem functions and services. However, the distribution of bacterial communities and factors driving coexistence in tree–grass associations and their ecosystem functions remain poorly understood. In this study, the distribution of soil bacteria and their link to changes in abiotic factors were investigated in adjacent montane grassland (C4 plants) and pine forest (bunya pine and hoop pine; C3 plants) sites in the Bunya Mountains, subtropical Australia. Different vegetation (grassy balds and forest) had a substantial effect on terrestrial ecosystem properties, with higher levels of soil nutrients (e.g. total nitrogen (N), total phosphorus (P)) and electrical conductivity (EC), and lower δ13C values and pH under forests compared with grassland. Bacterial α-diversity (total species per operational taxonomic unit richness) did not differ between grassland and pine forest sites, whereas strong shifts in the bacterial community composition and structure were evident. Patterns in bacterial community structure were strongly associated with changes in soil pH, EC, total P and δ13C. Different bacterial groups associated with pine forest (Gammaproteobacteria and Alphaproteobacteria) and grassland (Acidobacteria and Verrucomicrobia) were identified as key groups contributing to the segregation of these two ecosystems in the Bunya Mountains. These findings suggest that heterogeneity in soil edaphic properties (e.g. key nutrients) likely contributed to variation in bacterial β-diversity of grassland and pine forest, which has potential implications for species coexistence and ecosystem function in montane eastern Australia.



2017 ◽  
Vol 14 (23) ◽  
pp. 5393-5402 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Shen S. J. Wang ◽  
Chengrong Chen

Abstract. Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species–enzyme–C∕N model to investigate how temperature and tree species influence soil C∕N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01–2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99–2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22–1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and kauri pine (Agathis robusta C. Moore). Our results will be helpful for understanding the mechanisms of soil C and N cycling by different tree species, which will have implications for forest management.



2017 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Shen S. J. Wang ◽  
Chengrong Chen

Abstract. Forest plantations have been widely used as an effective measure for increasing soil carbon (C) and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms for the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a soil–enzyme–C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that temperature and tree species significantly influenced all soil EEA and Eucalyptus had higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait), become larger and larger over time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has longer residual soil N residence time than native coniferous tree species like hoop pine and kauri pine (Agathis robusta C. Moore). Our results will be helpful for understanding the mechanisms of soil C and N cycling by different tree species, which will have implications for forest management.



2017 ◽  
Vol 14 (8) ◽  
pp. 2101-2111 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Zhiying Guo ◽  
Chengrong Chen ◽  
Zhongjun Jia

Abstract. Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight the importance of soil pH and physiochemical characteristics in microbially mediated ecological processes in forested soils.



2017 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Zhiying Guo ◽  
Chengrong Chen ◽  
Zhongjun Jia

Abstract. Forest plantations have been recognized as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e., slash pine, hoop pine and kauri pine) and an eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors determining the patterns of soil bacterial and eukaryotic communities among the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight the importance of soil pH and physiochemical characteristics in microbially-mediated ecological processes in forested soils.



Sign in / Sign up

Export Citation Format

Share Document