Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Plant Pathogens

Author(s):  
Mohd Sayeed Akhtar ◽  
Zaki A. Siddiqui
2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Anuroopa Nanjundappa ◽  
Davis Joseph Bagyaraj ◽  
Anil Kumar Saxena ◽  
Murugan Kumar ◽  
Hillol Chakdar

AbstractSoil microorganisms play an important role in enhancing soil fertility and plant health. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria form a key component of the soil microbial population. Arbuscular mycorrhizal fungi form symbiotic association with most of the cultivated crop plants and they help plants in phosphorus nutrition and protecting them against biotic and abiotic stresses. Many species of Bacillus occurring in soil are also known to promote plant growth through phosphate solubilization, phytohormone production and protection against biotic and abiotic stresses. Synergistic interaction between AMF and Bacillus spp. in promoting plant growth compared to single inoculation with either of them has been reported. This is because of enhanced nutrient uptake, protection against plant pathogens and alleviation of abiotic stresses (water, salinity and heavy metal) through dual inoculation compared to inoculation with either AMF or Bacillus alone.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Gergely Ujvári ◽  
Alessandra Turrini ◽  
Luciano Avio ◽  
Monica Agnolucci

AbstractArbuscular mycorrhizal fungi (AMF) represent an important group of root symbionts, given the key role they play in the enhancement of plant nutrition, health, and product quality. The services provided by AMF often are facilitated by large and diverse beneficial bacterial communities, closely associated with spores, sporocarps, and extraradical mycelium, showing different functional activities, such as N2 fixation, nutrient mobilization, and plant hormone, antibiotic, and siderophore production and also mycorrhizal establishment promotion, leading to the enhancement of host plant performance. The potential functional complementarity of AMF and associated microbiota poses a key question as to whether members of AMF-associated bacterial communities can colonize the root system after establishment of mycorrhizas, thereby becoming endophytic. Root endophytic bacterial communities are currently studied for the benefits provided to host plants in the form of growth promotion, stress reduction, inhibition of plant pathogens, and plant hormone release. Their quantitative and qualitative composition is influenced by many factors, such as geographical location, soil type, host genotype, and cultivation practices. Recent data suggest that an additional factor affecting bacterial endophyte recruitment could be AMF and their associated bacteria, even though the mechanisms allowing members of AMF-associated bacterial communities to actually establish in the root system, becoming endophytic, remain to be determined. Given the diverse plant growth–promoting properties shown by AMF-associated bacteria, further studies are needed to understand whether AMF may represent suitable tools to introduce beneficial root endophytes in sustainable and organic agriculture where the functioning of such multipartite association may be crucial for crop production.


Akta Agrosia ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 25-31
Author(s):  
Fradilla Swandi ◽  
Eri Sulyanti ◽  
Darnetty Darnetty

Arbuscular Mycorrhizal Fungi (AMF) are known to have potential as biological agents controlling plant pathogens. This study aims to obtain indigenous AMF isolates that can suppress the attack of Sclerotium rolfsii which causes stem rot disease in peanut. The method used is an experimental method with a Completely Randomized Design with 5 treatments, namely A : AMF Glomus sp-3 + S. rolfsii; B: AMF Acaulospora sp + S. rolfsii; C: AMF Gigaspora sp + S. rolfsii; D: Combined AMF Glomus sp-3, Acaulospora sp, and Gigaspora sp + S. rolfsii; E: Without AMF + S. rolfsii (Control). Each treatment was repeated 5 times. The data were analyzed using Analysis of Variance (ANOVA) using the Statistix 8 program and the Least Significance Different (LSD) test at a 5% significance level. The results showed that the isolates of Acaulospora sp and Gigaspora sp were able to increase the resistance of peanut plants to stem rot disease (suppressing the incidence and severity of the disease) reaching 100%. Keywords: Arbuscular Mycorrhizal Fungi, indigenous, salicylic acid, Sclerotium rolfsii.


Sign in / Sign up

Export Citation Format

Share Document