A Comparison Of Vibration Amplitudes Of A Rotor Bearing System Due To Various Types Of Defects In Rolling Element Bearings

Author(s):  
A. Choudhury ◽  
N. Tandon
2013 ◽  
Vol 332 (8) ◽  
pp. 2081-2097 ◽  
Author(s):  
Feiyun Cong ◽  
Jin Chen ◽  
Guangming Dong ◽  
Michael Pecht

2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091541
Author(s):  
Vladas Vekteris ◽  
Andrius Trumpa ◽  
Vytautas Turla ◽  
Vadim Mokšin ◽  
Gintas Viselga ◽  
...  

This article considers problems arising from conventional techniques used to diagnose faults in the rolling-element bearings of rotor-bearing systems, with dampers used in centrifugal milk processing machinery. Such machines include milk separators and related processing machinery. The article asserts that where the rotor-bearing system is equipped with vibration dampers, conventional fault diagnostic measurements produce inadequate results. Hence, for rotor-bearing systems of this type, this article suggests a different way to diagnose faults in bearings and monitor conditions.


2003 ◽  
Vol 125 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Animesh Chatterjee ◽  
Nalinaksh S. Vyas

Volterra series provides a structured analytical platform for modeling and identification of nonlinear systems. The series has been widely used in nonparametric identification through higher order frequency response functions or FRFs. A parametric identification procedure based on recursive evaluation of response harmonic amplitude series is presented here. The procedure is experimentally investigated for a rotor-bearing system supported in rolling element bearings. The estimates of nonlinear bearing stiffness obtained from experimentation have been compared with analytical values and experimental results of previous works.


Author(s):  
Karthik Kappaganthu ◽  
C. Nataraj

In this paper a nonlinear model for defects in rolling element bearings is developed. Detailed nonlinear models are useful to detect, estimate and predict failure in rotating machines. Also, accurate modeling of the defect provides parameters that can be estimated to determine the health of the machine. In this paper the rotor-bearing system is modeled as a rigid rotor and the defects are modeled as pits in the bearing race. Unlike the previous models, the motion of the rolling element thorough the defect is not modeled as a predetermined function; instead, it is dynamically determined since it depends on the clearance and the position of the shaft. Using this nonlinear model, the motion of the shaft is simulated and the effect of the rolling element passing through the defect is studied. The effect of shaft parameters and the defect parameters on the precision of the shaft and the overall performance of the system is studied. Finally, suitable measures for health monitoring and defect tracking are suggested.


Author(s):  
Pankaj Kumar ◽  
S. Narayanan ◽  
Sayan Gupta

Abstract This paper presents a procedure for determination of dynamic properties of rolling element bearing by using the vibration signals picked up at the bearing caps. The rotor-bearing assembly is idealized as Duffing oscillator and random vibration signals modelled as exponentially correlated (Ornstein-Uhlenbeck) colored noise. Expressing the excitation as a first order filtered white noise enables the direct formulation of the 3D-Fokker Planck (FP) equation for system response through the Markov vector approach. Closed form solution of the stationary FP equation is derived. Subsequently the response statistics of experimentally obtained random vibration signal are processed through the closed form solution of the FP equation as the inverse process of parameters estimation from the measured response. Further, the dynamic behavior of rigid rotor-bearing system is investigated under combined excitation of white noise and harmonic forces arising due to rotor unbalance force. The effect of system nonlinearities, stiffness, damping and unbalanced excitation force on the dynamic response are investigated using the bifurcation plot. For assessment of structural degradation of bearings, a novel entropy based approach is developed. Experimental studies on roller bearing are carried out to demonstrate the effectiveness of the proposed approach.


2005 ◽  
Vol 128 (2) ◽  
pp. 252-261 ◽  
Author(s):  
A. Choudhury ◽  
N. Tandon

In the present investigation, a theoretical model has been developed to obtain the vibration response due to a localized defect in various bearing elements in a rotor-bearing system under radial load conditions. The rotor-bearing system has been modeled as a three degrees-of-freedom system. The model predicts significant components at the harmonics of characteristic defect frequency for a defect on the particular bearing element. In the case of a defect on the inner race or a rolling element, the model predicts sidebands about the peaks at defect frequencies, at multiples of shaft and cage frequencies, respectively. The model has also predicted some additional components at harmonics of shaft and cage frequencies due to a local defect on the inner race and a rolling element, respectively. The expressions for all these spectral components have also been derived. Typical numerical results for an NJ 204 bearing have been obtained and plotted. The amplitude of the component at defect frequency, for an outer race defect, is found to be much higher as compared to those due to inner race defect or a rolling element defect of the same size and under similar conditions of load and speed. The results of vibration measurements on roller bearings with simulated local defects have also been presented to experimentally validate the theoretical model proposed. It can be observed from the results that the spectral components predicted by the theoretical model find significant presence in the experimental spectra. Comparison of the normalized analytical values of the spectral components with their experimental values shows fair agreement for most of the cases considered. Probable area of the generated excitation pulses has been calculated and the effects of pulse area variation on the experimental results have been studied.


Sign in / Sign up

Export Citation Format

Share Document