Nonlinear Variational Methods for Estimating Effective Properties of Multiscale Materials

Author(s):  
Dag Lukkassen ◽  
Annette Meidell ◽  
Lars-Erik Persson
Author(s):  
Michael Struwe
Keyword(s):  

2010 ◽  
Vol 38 (4) ◽  
pp. 286-307
Author(s):  
Carey F. Childers

Abstract Tires are fabricated using single ply fiber reinforced composite materials, which consist of a set of aligned stiff fibers of steel material embedded in a softer matrix of rubber material. The main goal is to develop a mathematical model to determine the local stress and strain fields for this isotropic fiber and matrix separated by a linearly graded transition zone. This model will then yield expressions for the internal stress and strain fields surrounding a single fiber. The fields will be obtained when radial, axial, and shear loads are applied. The composite is then homogenized to determine its effective mechanical properties—elastic moduli, Poisson ratios, and shear moduli. The model allows for analysis of how composites interact in order to design composites which gain full advantage of their properties.


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Federico J. Sabina ◽  
Yoanh Espinosa-Almeyda ◽  
Raúl Guinovart-Díaz ◽  
Reinaldo Rodríguez-Ramos ◽  
Héctor Camacho-Montes

The development of micromechanical models to predict the effective properties of multiphase composites is important for the design and optimization of new materials, as well as to improve our understanding about the structure–properties relationship. In this work, the two-scale asymptotic homogenization method (AHM) is implemented to calculate the out-of-plane effective complex-value properties of periodic three-phase elastic fiber-reinforced composites (FRCs) with parallelogram unit cells. Matrix and inclusions materials have complex-valued properties. Closed analytical expressions for the local problems and the out-of-plane shear effective coefficients are given. The solution of the homogenized local problems is found using potential theory. Numerical results are reported and comparisons with data reported in the literature are shown. Good agreements are obtained. In addition, the effects of fiber volume fractions and spatial fiber distribution on the complex effective elastic properties are analyzed. An analysis of the shear effective properties enhancement is also studied for three-phase FRCs.


Sign in / Sign up

Export Citation Format

Share Document