The Problem of Expression of Multidisulfide Bonded Recombinant Proteins in E. coli

2011 ◽  
pp. 183-215
Author(s):  
Silvia A. Arredondo ◽  
George Georgiou
Keyword(s):  
2006 ◽  
Vol 72 (8) ◽  
pp. 5225-5231 ◽  
Author(s):  
Emmanuel Frachon ◽  
Vincent Bondet ◽  
Hélène Munier-Lehmann ◽  
Jacques Bellalou

ABSTRACT A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.


2014 ◽  
Vol 185 ◽  
pp. S70
Author(s):  
Boguslaw Lupa ◽  
Krzysztof Stawujak ◽  
Igor Rozanski ◽  
Justyna Stec-Niemczyk

2007 ◽  
Vol 85 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hongmei Dong ◽  
Xiaohu Xu ◽  
Mohong Deng ◽  
Xiaojun Yu ◽  
Hu Zhao ◽  
...  

The aim of the study was to prepare an active recombinant human perforin by comparing 5 candidate segments of human perforin. Full-length perforin, MAC1 (28–349 aa), MAC2 (166–369 aa), C-100, and N-60 of human perforin were selected as candidate active segments and designated, respectively, HP1, HP2, HP3, HP4, and HP5. The target genes were amplified by PCR and the products were individually subcloned into pGEM-T. The genes for HP1, HP2, HP3, and HP5 were subcloned into pET-DsbA, whereas pET-41a (+) was used as the expression vector of HP4. The fusion proteins were expressed in Escherichia coli BL21pLysS(DE3) and purified using nickel nitrilotriacetic acid (NTA) agarose affinity chromatography. The hemolysis microassay was used as an activity assay of fusion protein. From this study, we obtained the recombinant plasmids pGEM-T-HP1, -HP2, -HP3, -HP4 and -HP5, consisting of 1600, 960, 600, 300bp, and 180, respectively. From these recombinant plasmids, expression plasmids were successfully constructed and expressed in E. coli BL21pLysS(DE3). The resultant fusion proteins, affinity purified using Ni–NTA, were ~80, 58, 45, 44, and 30 kDa, respectively. The recombinant proteins were assayed for activity on hemolysis. HP2 and HP5 were the only recombinant proteins that were active in hemolysis, and the hemolytic function was concentration dependent. These results demonstrate that active recombinant forms of perforin can be synthesized in a prokaryote model. The recombinant N-60 and MAC1 (28–349 aa) of human perforin have the function of forming pores. Our study provides the experimental basis for further investigation on the application of perforin.


2005 ◽  
Vol 70 (12) ◽  
pp. 1401-1407 ◽  
Author(s):  
Sandra Markovic ◽  
Sandra Vojnovic ◽  
Milija Jovanovic ◽  
Branka Vasiljevic

The KgmB methylase from Streptomyces tenebrarius was expressed and purified using the QIAexpress System. Two expression vectors were made: pQEK-N, which places a (His)6 tag at the N-terminus, and pQEK-C, which places a (His)6 tag at the C-terminus of the recombinant KgmB protein. Kanamycin resistance of the E. coli cells containing either the pQEK-N or the pQEK-C recombinant plasmids confirmed the functionality of both KgmB-His fusion proteins in vivo. Interestingly, different levels of expression were observed between these two recombinant proteins. Namely, KgmB methylase with the (His)6 tag at the N-terminus showed a higher level of expression. Purification of the (His)6-tagged proteins using Ni-NTA affinity chromatography was performed under native conditions and the KgmB methylase with (His)6 tag at the N-terminus was purified to homogeneity >95 %. The recombinant KgmB protein was detected on a Western blot using anti-Sgm antibodies.


2000 ◽  
Vol 66 (3) ◽  
pp. 884-889 ◽  
Author(s):  
Kazuyo Nishihara ◽  
Masaaki Kanemori ◽  
Hideki Yanagi ◽  
Takashi Yura

ABSTRACT To examine the effects of overexpression of trigger factor (TF) on recombinant proteins produced in Escherichia coli, we constructed plasmids that permitted controlled expression of TF alone or together with the GroEL-GroES chaperones. The following three proteins that are prone to aggregation were tested as targets: mouse endostatin, human oxygen-regulated protein ORP150, and human lysozyme. The results revealed that TF overexpression had marked effects on the production of these proteins in soluble forms, presumably through facilitating correct folding. Whereas overexpression of TF alone was sufficient to prevent aggregation of endostatin, overexpression of TF together with GroEL-GroES was more effective for ORP150 and lysozyme, suggesting that TF and GroEL-GroES play synergistic roles in vivo. Although coexpression of the DnaK-DnaJ-GrpE chaperones was also effective for endostatin and ORP150, coexpression of TF and GroEL-GroES was more effective for lysozyme. These results attest to the usefulness of the present expression plasmids for improving protein production inE. coli.


2010 ◽  
Vol 12 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Chen-Yu Tsao ◽  
Sara Hooshangi ◽  
Hsuan-Chen Wu ◽  
James J. Valdes ◽  
William E. Bentley

SpringerPlus ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 89 ◽  
Author(s):  
Teresa San-Miguel ◽  
Pedro Pérez-Bermúdez ◽  
Isabel Gavidia

Sign in / Sign up

Export Citation Format

Share Document