Modeling and H ∞ PID Plus Feedforward Controller Design for an Electrohydraulic Actuator System

Author(s):  
Yang Lin ◽  
Yang Shi ◽  
Richard Burton
2022 ◽  
pp. 107754632110623
Author(s):  
Shota Yabui ◽  
Takenori Atsumi

Large-capacity hard disk drives are important for the development of an information society. The capacities of hard disk drives depend on the positioning accuracy of magnetic heads, which read and write digital data, in disk-positioning control systems. Therefore, it is necessary to improve positioning accuracy to develop hard disk drives with large capacities. Hard disk drives employ dual-stage actuator systems to accurately control the magnetic heads. A dual-stage actuator system consists of a voice coil motor and micro-actuator. In micro-actuators, there is a trade-off between head-positioning accuracy and stroke limitation. In particular, in a conventional controller design, the micro-actuator is required to actuate such that it compensates for low-frequency vibration. To overcome this trade-off, this study proposes a high-bandwidth controller design for the micro-actuator in a dual-stage actuator system. The proposed method can reduce the required stroke of the micro-actuator by increasing the gain of the feedback controller of the voice coil motor at low frequencies. Although the voice coil motor control loop becomes unstable, the micro-actuator stabilizes the entire feedback loop at high frequencies. As a result, the control system improves the positioning accuracy compared to that achieved by conventional control methods, and the required micro-actuator stroke is reduced.


2004 ◽  
Vol 126 (1) ◽  
pp. 235-238 ◽  
Author(s):  
Ying-Shieh Kung ◽  
Rong-Fong Fung

In this paper, a control method combining the feedforward and feedback controllers is proposed to precisely control the dynamic performance of the piezoceramic actuator (PA). In the feedforward controller design, the hysteresis nonlinearity of the PA is modeled by using Preisach model first. Then a database of switching input/output values and a neural networks architecture treated as the inverse function of Preisach model are utilized in the feedforward controller. In the feedback controller design, a PI controller is used to regulate the output error. Finally, some experimental results are validated the excellent tracking performances of the proposed controller.


2006 ◽  
Vol 505-507 ◽  
pp. 529-534 ◽  
Author(s):  
Chin Sheng Chen ◽  
Yu Reng Lee

This paper presented a digital servo driver that realizes an auto-tuning feedback and feedforward controller design using on-line parameters identification. Firstly, the variant inertia constant, damping constant and the disturbed load torque of the servo motor are estimated by the recursive least square (RLS) estimator, which is composed of an RLS estimator and a disturbance torque compensator. Furthermore, the auto-tuning algorithm of feedback and feedforward controller is realized according to the estimated parameters to match the tracking specification. The proposed auto-tuning digital servo controllers are evaluated and compared experimentally with a traditional controller on a microcomputer-controlled servo motor positioning system. The experimental results show that this auto-tuning digital servo system remarkably reduces the tracking error.


Sign in / Sign up

Export Citation Format

Share Document