Performance Enhancement of Indoor Channels Using Quasi-Coherent Combining of Multiple Antenna Signals

Author(s):  
Gerard J. M. Janssen
Author(s):  
Sheng Chen

Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of supporting multiusers in a space-division multiple-access scenario. Moreover, for the sake of further improving the achievable bandwidth efficiency, high-throughput quadrature amplitude modulation (QAM) schemes have become popular in numerous wireless network standards, notably, in the recent WiMax standard. This contribution focuses on the design of adaptive beamforming assisted detection for the employment in multiple-antenna aided multiuser systems that employ the high-order QAM signalling. Traditionally, the minimum mean square error (MMSE) design is regarded as the state-of-the-art for adaptive beamforming assisted receiver. However, the recent work (Chen et al., 2006) proposed a novel minimum symbol error rate (MSER) design for the beamforming assisted receiver, and it was demonstrated that this MSER design provides significant performance enhancement, in terms of achievable symbol error rate, over the standard MMSE design. This MSER beamforming design is developed fully in this contribution. In particular, an adaptive implementation of the MSER beamforming solution, referred to as the least symbol error rate algorithm, is investigated extensively. The proposed adaptive MSER beamforming scheme is evaluated in simulation, in comparison with the adaptive MMSE beamforming benchmark.


2018 ◽  
Author(s):  
Keith A. Kaufman ◽  
Carol R. Glass ◽  
Timothy R. Pineau

2003 ◽  
Author(s):  
M. Bar-Eli ◽  
O. Lowengart ◽  
J. Goldberg ◽  
S. Epstein ◽  
R. D. Fosbury

2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2011 ◽  
Vol 4 (4) ◽  
pp. 377-386
Author(s):  
B.Palpandi B.Palpandi ◽  
◽  
Dr. G.Geetharamani Dr. G.Geetharamani ◽  
J.Arun Pandian

Sign in / Sign up

Export Citation Format

Share Document