space division multiple access
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 0)

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1948
Author(s):  
Carla E. Garcia ◽  
Mario R. Camana ◽  
Insoo Koo

The integration of non-orthogonal multiple access (NOMA) in cognitive radio (CR) networks has demonstrated how to enhance spectrum efficiency and achieve massive connectivity for future mobile networks. However, security is still a challenging issue due to the wireless transmission environment and the broadcast nature of NOMA. Thus, in this paper, we investigate a beamforming design with artificial noise (AN) to improve the security of a multi-user downlink, multiple-input single-output (MISO) NOMA-CR network with simultaneous wireless information and power transfer (SWIPT). To further support power-limited, battery-driven devices, energy-harvesting (EH) users are involved in the proposed network. Specifically, we investigate the optimal AN, power-splitting ratios, and transmission beamforming vectors for secondary users and EH users in order to minimize the transmission power of the secondary network, subject to the following constraints: a minimum signal-to-interference-plus-noise ratio at the secondary users, minimum harvested energy by secondary users and EH users, maximum power at the secondary transmitter, and maximum permissible interference with licensed users. The proposed solution for the challenging non-convex optimization problem is based on the semidefinite relaxation method. Numerical results show that the proposed scheme outperforms the conventional scheme without AN, the zero-forcing-based scheme and the space-division multiple-access-based method.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fangwei Li ◽  
Yue Wu ◽  
Yifang Nie ◽  
Ce Shi

This paper studies optimal resource allocation in the wireless powered communication networks (WPCN) combined with time reversal (TR) in which one hybrid access point (H-AP) broadcasts constant wireless energy to a set of distributed users in the downlink (DL) and receives information from the users via space division multiple access (SDMA) in the uplink (UL). Inevitable interferences will occur when users transmit information in the UL simultaneously and the special space-time focusing of TR is used to suppress the interferences. An efficient protocol is proposed to support wireless energy transfer (WET) and TR in the DL and wireless information transmission in the UL for the proposed TR-WPCN. We optimize the time allocations to the H-AP for DL WET, DL TR, and UL WIT to maximize the sum throughput. Due to the nonconvexity of the studied optimization problem, we optimize variables successively, where the nonconvex optimization problem is transformed into the convex optimization problem. The approximate convex optimization problem can then be solved iteratively combined with the dichotomy method. Simulation results show that the proposed scheme can effectively suppress interferences and improve system performance.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-10
Author(s):  
Kazuki Maruta

This paper newly proposes a frequency domain backoff scheme dedicated to continuous beamforming space division multiple access (CB-SDMA) on massive antenna systems for wireless entrance (MAS-WE). The entrance base station (EBS) has individual base band signal processing units for respective relay stations (RSs) to be accommodated. EBS then continuously applies beamforming weight to transmission/reception signals. CB-SDMA yields virtual point-to-point backhaul link where radio resource control messages and complicated multiuser scheduling are not required. This simplified structure allows RSs to work in a distributed manner. However, one issue remains to be resolved; overloaded multiple access resulting in collision due to its random access nature. The frequency domain backoff mechanism is introduced instead of the time domain one. It can flexibly avoid co-channel interference caused by excessive spatial multiplexing. Computer simulation verifies its superiority in terms of system throughput and packet delay.


Sign in / Sign up

Export Citation Format

Share Document