Neural Networks: Artificial Intelligence and Industrial Applications

Author(s):  
Daniel Auge ◽  
Julian Hille ◽  
Etienne Mueller ◽  
Alois Knoll

AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.


2018 ◽  
Vol 210 ◽  
pp. 04030
Author(s):  
Zora Koštialová Jančíková ◽  
Pavel Koštial ◽  
Milan Heger ◽  
Robert Frischer ◽  
Jiří David ◽  
...  

The paper presents the review of works devoted to the material engineering – diagnostic and technological application of artificial neural networks (ANN). This review has been realized by activities created in narrow connection with the industrial sphere, mainly as a constructive step to development of Industry 4.0 philosophy. The review covers different materials measurement and evaluation. There have been investigated such materials as rubber blends, laminates, optical glasses; and also survey covers degradation processes appeared in industrial applications as well as the material defect evaluation and wearing diagnostics. The last part of the review offers output concerning infrared technique application of ANN. This review can serve as an inspiration for new challenges.


Author(s):  
A.B. Movsisyan ◽  
◽  
A.V. Kuroyedov ◽  
G.A. Ostapenko ◽  
S.V. Podvigin ◽  
...  

Актуальность. Определяется увеличением заболеваемости глаукомой во всем мире как одной из основных причин снижения зрения и поздней постановкой диагноза при имеющихся выраженных изменений со стороны органа зрения. Цель. Повысить эффективность диагностики глаукомы на основании оценки диска зрительного нерва и перипапиллярной сетчатки нейросетью и искусственным интеллектом. Материал и методы. Для обучения нейронной сети были выделены четыре диагноза: первый – «норма», второй – начальная глаукома, третий – развитая стадия глаукомы, четвертый – глаукома далеко зашедшей стадии. Классификация производилась на основе снимков глазного дна: область диска зрительного нерва и перипапиллярной сетчатки. В результате классификации входные данные разбивались на два класса «норма» и «глаукома». Для целей обучения и оценки качества обучения, множество данных было разбито на два подмножества: тренировочное и тестовое. В тренировочное подмножество были включены 8193 снимка с глаукомными изменениями диска зрительного нерва и «норма» (пациенты без глаукомы). Стадии заболевания были верифицированы согласно действующей классификации первичной открытоугольной глаукомы 3 (тремя) экспертами со стажем работы от 5 до 25 лет. В тестовое подмножество были включены 407 снимков, из них 199 – «норма», 208 – с начальной, развитой и далекозашедшей стадиями глаукомы. Для решения задачи классификации на «норма»/«глаукома» была выбрана архитектура нейронной сети, состоящая из пяти сверточных слоев. Результаты. Чувствительность тестирования дисков зрительных нервов с помощью нейронной сети составила 0,91, специфичность – 0,93. Анализ полученных результатов работы показал эффективность разработанной нейронной сети и ее преимущество перед имеющимися методами диагностики глаукомы. Выводы. Использование нейросетей и искусственного интеллекта является современным, эффективным и перспективным методом диагностики глаукомы.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).


2020 ◽  
Vol 112 (5) ◽  
pp. S50
Author(s):  
Zachary Eller ◽  
Michelle Chen ◽  
Jermaine Heath ◽  
Uzma Hussain ◽  
Thomas Obisean ◽  
...  

Author(s):  
Wael H. Awad ◽  
Bruce N. Janson

Three different modeling approaches were applied to explain truck accidents at interchanges in Washington State during a 27-month period. Three models were developed for each ramp type including linear regression, neural networks, and a hybrid system using fuzzy logic and neural networks. The study showed that linear regression was able to predict accident frequencies that fell within one standard deviation from the overall mean of the dependent variable. However, the coefficient of determination was very low in all cases. The other two artificial intelligence (AI) approaches showed a high level of performance in identifying different patterns of accidents in the training data and presented a better fit when compared to the regression model. However, the ability of these AI models to predict test data that were not included in the training process showed unsatisfactory results.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


Sign in / Sign up

Export Citation Format

Share Document