Mechanisms of Action of Antiarrhythmic Drugs in Atrial Fibrillation

2013 ◽  
pp. 141-156
Author(s):  
Alexander Burashnikov ◽  
Charles Antzelevitch
2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


2011 ◽  
Vol 7 (2) ◽  
pp. 97 ◽  
Author(s):  
Niels Voigt ◽  
Dobromir Dobrev ◽  
◽  

Atrial fibrillation (AF) is the most common arrhythmia and is associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. Present drugs used for the therapy of AF (antiarrhythmics and anticoagulants) have major limitations, including incomplete efficacy, risks of life-threatening proarrhythmic events and bleeding complications. Non-pharmacological ablation procedures are efficient and apparently safe, but the very large size of the patient population allows ablation treatment of only a small number of patients. These limitations largely result from limited knowledge about the underlying mechanisms of AF and there is a hope that a better understanding of the molecular basis of AF may lead to the discovery of safer and more effective therapeutic targets. This article reviews the current knowledge about AF-related ion-channel remodelling and discusses how these alterations might affect the efficacy of antiarrhythmic drugs.


JAMA ◽  
2005 ◽  
Vol 293 (21) ◽  
pp. 2634 ◽  
Author(s):  
Oussama M. Wazni ◽  
Nassir F. Marrouche ◽  
David O. Martin ◽  
Atul Verma ◽  
Mandeep Bhargava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document