Enzymatic Digestibility of Used Newspaper Treated with Aqueous Ammonia-Hydrogen Peroxide Solution

Author(s):  
Sung Bae Kim ◽  
Nam Kyu Moon
2009 ◽  
Vol 59 (12) ◽  
pp. 1400-1404
Author(s):  
Marius Tudorascu ◽  
Spiridon Oprea ◽  
Afrodita Doina Marculescu ◽  
Stefania Tudorascu

The mechanism of the enzymatic iodination process of diethylmaleate and diethylfumarate (which present no miscibility with water) in the presence of lactoperoxidase, both in diluted hydrogen peroxide solution and in a generating system of hydrogen peroxide using ammonium and calcium iodides as halide sources in disperse system (after an ultrasonic pretreatment) was studied. The obtained sole product (diethyl-2, 3-diiodosuccinate) after the enzymatic iodination process was directly hydrolyzed to a tartaric acid present in an optically inactive form. The mechanism of obtaining the intermediate and final products and respectively, the existence of both D, L-tartaric acid and meso-tartaric acids (as lithium bitartrates) were also investigated.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (4) ◽  
pp. 593-594
Author(s):  
WAYNE R. RACKOFF ◽  
DAVID F. MERTON

Gas embolism to the portal venous system is a well-recognized radiographic sign in infants with necrotizing enterocolitis. It also has been seen after colonic irrigation with hydrogen peroxide solution.1,2 We present what we believe is the first reported patient with radiographic evidence of portal venous gas embolism after ingestion of hydrogen peroxide solution. This finding is important because gas embolism to the portal venous system after colonic irrigation with hydrogen peroxide has been associated with gangrenous and perforated bowel.1,2 CASE REPORT A 2-year-old boy ingested an unknown amount of 3% hydrogen peroxide solution. The child was found with foam around his mouth.


2017 ◽  
Vol 8 (10) ◽  
Author(s):  
Salgado HRN ◽  
de Menezes MN ◽  
Kogawa AC

2018 ◽  
Vol 33 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Dan Huo ◽  
Qiulin Yang ◽  
Guigan Fang ◽  
Qiujuan Liu ◽  
Chuanling Si ◽  
...  

Abstract Eucalyptus residues from pulp mill were pretreated with aqueous ammonia soaking (AAS) method to improve the efficiency of enzymatic hydrolysis. The optimized condition of AAS was obtained by response surface methodology. Meanwhile, hydrogen peroxide was introduced into the AAS system to modify the AAS pretreatment (AASP). The results showed that a fermentable sugar yield of 64.96 % was obtained when the eucalypt fibers were pretreated at the optimal conditions, with 80 % of ammonia (w/w) for 11 h and keeping the temperature at 90 °C. In further research it was found that the addition of H2O2 to the AAS could improve the pretreatment efficiency. The delignification rate and enzymatic digestibility were increased to 64.49 % and 73.85 %, respectively, with 5 % of hydrogen peroxide being used. FTIR analysis indicated that most syringyl and guaiacyl lignin and a trace amount of xylan were degraded and dissolved during the AAS and AASP pretreatments. The CrI of the raw material was increased after AAS and AASP pretreatments, which was attributed to the removal of amorphous portion. SEM images showed that microfibers were separated and explored from the initial fiber structure after AAS pretreatment, and the AASP method could improve the destructiveness of the fiber surface.


Sign in / Sign up

Export Citation Format

Share Document