EEC Water Quality Objectives for Chemicals Dangerous to Aquatic Environments (List 1)

Author(s):  
George W. Ware
1994 ◽  
Vol 29 (3) ◽  
pp. 95-106
Author(s):  
Alfred P. Benoist ◽  
Gerard H. Broseliske

For priority pollutants, the international Rhine Action Programme (RAP) aims to meet the quality objectives for the Rhine, set by the International Rhine Commission (IRC), by the year 2000. An assessment must be carried out to define additional measures exceeding best available technology (BAT) for point sources and best environmental practice (BEP) for diffuse sources for those priority pollutants still violating the quality objectives of the Rhine after implementing BAT and BEP only. To carry out the required assessments, an excessive amount of work and money is needed, including the application of sophisticated calculation models. For prioritizing reasons, the Institute for Inland Water Management and Waste Water Treatment (RIZA) initiated a project called EVER, which was conducted by DHV Water BV. EVER is the abbreviation of the Dutch equivalent for Effective Distribution of Emission Reductions (Effective Verdeling van Emissie Reducties). The aim of this project is to carry out a first and crude evaluation of the impact of abatement measures (BAT and BEP), as set by the IRC for the period 1985-1995. For those pollutants still showing a violation of the quality objectives for the Rhine in the year 1995, a range finding method is used, to predict the costs and impact of abatement measures exceeding BAT and BEP on the water quality of the Rhine. So, EVER is a management tool to prioritize the work to be done within the frame-work of the IRC, triggering the application of e.g. sophisticated calculation models for a selected number of priority pollutants. In EVER, the prognosis of the reduction of specific discharge rates for approximately forty priority pollutants is given for twelve sub-catchment areas for the year 1995. This prognosis is used to predict concentrations at eight international monitoring locations in the Rhine basin, using the discharges and concentrations of the year 1985 as a reference. The predicted concentrations for the year 1995 are compared with the (preliminary) water quality objectives as set by the IRC. The results indicate, that for six of the selected pollutants the number of available data is too small for sound predictions. Fifteen of the selected pollutants will satisfy the water quality objectives in 1995. Twenty (half) of the selected pollutants will still violate the quality objectives at several monitoring locations. These twenty pollutants are the basis for priorities to be set within the frame-work of the IRC for phase 3 (1995-2000) of the RAP. For these pollutants, additional abatement measures exceeding BAT and BEP are selected in EVER for the manageable groups of sources (anthropogenic non-point sources, industrial sources and municipal sources). Each measure is analyzed separately for costs and effectiveness. Finally the results of this project are integrated into a matrix system which will enable us to select the most effective mix of pollution abatement measures at the lowest costs. The result of the selected additional measures exceeding BAT and BEP shows that 17 pollutants will still violate the quality objectives.


2009 ◽  
Vol 2009 (6) ◽  
pp. 984-1006
Author(s):  
Karen Cowan ◽  
Earl Byron ◽  
Samuel Luoma ◽  
Theresa Presser ◽  
Gary Santolo ◽  
...  

1994 ◽  
Vol 74 (1) ◽  
pp. 59-66 ◽  
Author(s):  
B. T. Bowman ◽  
G. J. Wall ◽  
D. J. King

The risk of surface-water contamination by herbicides is greatest following application to cropland when the active ingredients are at the maximum concentration and the soil is the most vulnerable to erosion following cultivation. This study determined the magnitude of surface runoff losses of herbicide and nutrients at, and subsequent to, application. The first of three weekly 10-min, 2.6-cm rainfalls were simulated on triplicated 1-m plots (a set) on which corn had been planted and the herbicide (metolachlor/atrazine, 1.5:1.0) and fertilizer (28% N at 123 kg ha−1) had just been applied. Identical simulations were applied to two other adjacent plot sets (protected from rainfall) 1 and 2 wk following herbicide application. Runoff (natural, simulated) was monitored for soil, nutrient and herbicide losses. Concentrations of total phosphorus in surface runoff water and nitrate N in field-filtered samples were not significantly influenced by the time of the rainfall simulation but exceeded provincial water-quality objectives. Atrazine and metolachlor runoff losses were greatest from simulated rainfall (about 5% loss) immediately following application. Subsequent simulated rainfall usually resulted in < 1% herbicide runoff losses. Herbicide concentrations in all plot runoff samples exceeded provincial drinking-water quality objectives. Since herbicide surface transport is primarily in the solution phase (not via association with soil particles), water-management conservation technologies are the key to retaining these chemicals on cropland. Key words: Herbicide, runoff, rainfall simulation, partitioning, water quality


1998 ◽  
Vol 33 (4) ◽  
pp. 519-550 ◽  
Author(s):  
Paul A. Zandbergen ◽  
Ken J. Hall

Abstract The use of indices in ecosystem management is attractive because it allows for the representation of a complex set of information on ecosystem variables in a simple fashion. Recently the British Columbia Ministry of Environment, Lands and Parks developed the British Columbia Water Quality Index (BCWQI). As this index is currently being considered as the basis for other provincial indices and a national water quality index, the character of the BCWQI needs to be carefully considered. This study evaluates the performance of the BCWQI and assesses how useful and appropriate it is as a management tool at the watershed level. For this purpose the index is used to express the results of two sampling programs, one by the British Columbia Ministry of Environment, Lands and Parks, and the other by the Westwater Research Centre, of two relatively small watersheds in the Greater Vancouver area: the Brunette River watershed, heavily impacted by urbanization, and the Salmon River watershed on the urban-rural fringe. For both watersheds the intended use is the protection of aquatic life and only those water quality objectives are considered. The results indicate that the BCWQI is extremely sensitive to sampling design and highly dependent on the specific application of water quality objectives. A comparison is made with another type of index in widespread use in North America: the National Sanitation Foundation Water Quality Index (NSFWQI). This index appears promising for stream stewardship groups because of its simplicity and ease of use. For watershed managers, an alternative to the BCWQI is suggested, based on exceedance factors for individual objectives. This Simple Water Quality Index (SWQI) recognizes the importance of objectives that are specific to a particular water body, but overcomes some of the limitations of the BCWQI. A presentation format is suggested for objective exceedance factors, with a clear indication of exactly which objectives were included — without this, the final numerical index value is meaningless. This study suggests that the BCWQI in its current form has serious limitations for comparing water bodies and for establishing management priorities. If local watershed managers use the BCWQI in guiding efforts to protect aquatic resources, they should consider these limitations carefully.


2020 ◽  
Author(s):  
Watsawan Sangkaew ◽  
Akechai Kongprajug ◽  
Natcha Chyerochana ◽  
Warish Ahmed ◽  
Skorn Mongkolsuk ◽  
...  

AbstractIdentifying human sewage contamination via microbial source tracking (MST) marker genes has proven useful for effective water quality management worldwide; however, performance evaluations for these genes in tropical areas are limited. Therefore, this research assessed four human-associated MST marker genes in aquatic environments of Central Thailand: human polyomaviruses (JC and BK viruses [HPyVs]), bacteriophage crAssphage (CPQ_056), Lachnospiraceae Lachno3, and Bacteroides BacV6-21. HPyV and crAssphage assays were highly sensitive and specific to sewage (n = 19), with no cross-detection in 120 swine, cattle, chicken, duck, goat, sheep, and buffalo composite fecal samples. Lachno3 and BacV6-21 demonstrated high sensitivity but moderate specificity; however, using both markers could improve specificity to >0.80 (max value of 1.00). The most abundant markers in sewage were Lachno3 and BacV6-21 (5.42-8.02 and non-detected-8.05 log10 copies/100 mL), crAssphage (5.28-7.38 log10 copies/100 mL), and HPyVs (3.66-6.53 log10 copies/100 mL), respectively. HPyVs showed higher levels (up to 4.33 log10 copies/100 mL) and higher detection rates (92.7%) in two coastal beaches (n = 41) than crAssphage (up to 3.51 log10 copies/100 mL and 56.1%). HPyVs were also found at slightly lower levels (up to 5.10 log10 copies/100 mL), but at higher detection rates (92.6%), in a freshwater canal (n = 27) than crAssphage (up to 5.21 log10 copies/100 mL and 88.9%). Overall, both HPyVs and crAssphage are suggested as human sewage-associated MST markers in aquatic environments of Central Thailand. This study underlines the importance of characterizing and validating MST markers in host groups and environmental waters before including them in a water quality management toolbox.


1984 ◽  
Vol 16 (5-7) ◽  
pp. 493-497
Author(s):  
Ole Have Jørgensen

In 1983 the National Agency for Environmental Protection in Denmark published guiding regulations for water quality planning, based upon the rules in the Environmental Protection Act of 1974 with recent changes in 1982. The planning system contains three steps - determination of water quality objectives, calculation of discharge consents and control activities. A list of suggested quality objectives for rivers, lakes and coastal waters is included as well as a strategy for handling discharges of chemical compounds not originally found in the water.


Sign in / Sign up

Export Citation Format

Share Document