An Example of Spatial Integration of a Land-Surface Parameterization in a Meso-Beta-Scale Model

1991 ◽  
pp. 383-402 ◽  
Author(s):  
P. Bougeault ◽  
B. Bret ◽  
P. Lacarrere ◽  
Joël Noilhan
1999 ◽  
Vol 3 (3) ◽  
pp. 363-374 ◽  
Author(s):  
M. Lobmeyr ◽  
D. Lohmann ◽  
C. Ruhe

Abstract. This paper investigates the ability of the VIC-2L model coupled to a routing model to reproduce streamflow in the catchment of the lower Elbe River, Germany. The VIC-2L model, a hydrologically-based land surface scheme (LSS) which has been tested extensively in the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS), is put up on the rotated grid of 1/6 degree of the atmospheric regional scale model (REMO) used in the Baltic Sea Experiment (BALTEX). For a 10 year period, the VIC-2L model is forced in daily time steps with measured daily means of precipitation, air temperature, pressure, wind speed, air humidity and daily sunshine duration. VIC-2L model output of surface runoff and baseflow is used as input for the routing model, which transforms modelled runoff into streamflow, which is compared to measured streamflow at selected gauge stations. The water balance of the basin is investigated and the model results on daily, monthly and annual time scales are discussed. Discrepancies appear in time periods where snow and ice processes are important. Extreme flood events are analyzed in more dital. The influence of calibration with respect to runoff is examined.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sara Bonetti ◽  
Zhongwang Wei ◽  
Dani Or

AbstractEarth system models use soil information to parameterize hard-to-measure soil hydraulic properties based on pedotransfer functions. However, current parameterizations rely on sample-scale information which often does not account for biologically-promoted soil structure and heterogeneities in natural landscapes, which may significantly alter infiltration-runoff and other exchange processes at larger scales. Here we propose a systematic framework to incorporate soil structure corrections into pedotransfer functions, informed by remote-sensing vegetation metrics and local soil texture, and use numerical simulations to investigate their effects on spatially distributed and areal averaged infiltration-runoff partitioning. We demonstrate that small scale soil structure features prominently alter the hydrologic response emerging at larger scales and that upscaled parameterizations must consider spatial correlations between vegetation and soil texture. The proposed framework allows the incorporation of hydrological effects of soil structure with appropriate scale considerations into contemporary pedotransfer functions used for land surface parameterization.


2018 ◽  
Vol 22 (9) ◽  
pp. 4815-4842 ◽  
Author(s):  
Vinícius A. Siqueira ◽  
Rodrigo C. D. Paiva ◽  
Ayan S. Fleischmann ◽  
Fernando M. Fan ◽  
Anderson L. Ruhoff ◽  
...  

Abstract. Providing reliable estimates of streamflow and hydrological fluxes is a major challenge for water resources management over national and transnational basins in South America. Global hydrological models and land surface models are a possible solution to simulate the terrestrial water cycle at the continental scale, but issues about parameterization and limitations in representing lowland river systems can place constraints on these models to meet local needs. In an attempt to overcome such limitations, we extended a regional, fully coupled hydrologic–hydrodynamic model (MGB; Modelo hidrológico de Grandes Bacias) to the continental domain of South America and assessed its performance using daily river discharge, water levels from independent sources (in situ, satellite altimetry), estimates of terrestrial water storage (TWS) and evapotranspiration (ET) from remote sensing and other available global datasets. In addition, river discharge was compared with outputs from global models acquired through the eartH2Observe project (HTESSEL/CaMa-Flood, LISFLOOD and WaterGAP3), providing the first cross-scale assessment (regional/continental  ×  global models) that makes use of spatially distributed, daily discharge data. A satisfactory representation of discharge and water levels was obtained (Nash–Sutcliffe efficiency, NSE > 0.6 in 55 % of the cases) and the continental model was able to capture patterns of seasonality and magnitude of TWS and ET, especially over the largest basins of South America. After the comparison with global models, we found that it is possible to obtain considerable improvement on daily river discharge, even by using current global forcing data, just by combining parameterization and better routing physics based on regional experience. Issues about the potential sources of errors related to both global- and continental-scale modeling are discussed, as well as future directions for improving large-scale model applications in this continent. We hope that our study provides important insights to reduce the gap between global and regional hydrological modeling communities.


1997 ◽  
Vol 10 (6) ◽  
pp. 1194-1215 ◽  
Author(s):  
T. H. Chen ◽  
A. Henderson-Sellers ◽  
P. C. D. Milly ◽  
A. J. Pitman ◽  
A. C. M. Beljaars ◽  
...  

1994 ◽  
Vol 10 (6-7) ◽  
pp. 349-361 ◽  
Author(s):  
J A Marengo ◽  
J R Miller ◽  
G L Russell ◽  
C E Rosenzweig ◽  
F Abramopoulos

Sign in / Sign up

Export Citation Format

Share Document