Estimation of the aqueous solubility of some aromatic compounds

1983 ◽  
pp. 43-55 ◽  
Author(s):  
S. H. Yalkowsky ◽  
S. C. Valvani ◽  
D. Mackay
2018 ◽  
Vol 472 ◽  
pp. 85-93 ◽  
Author(s):  
Raimundo Gillet ◽  
Angélica Fierro ◽  
Loreto M. Valenzuela ◽  
José R. Pérez-Correa

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
G Lewin ◽  
A Maciuk ◽  
A Moncomble ◽  
JP Cornard

2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


2017 ◽  
Vol 51 (4) ◽  
pp. 315-328
Author(s):  
Arturo Mendoza-Flores ◽  
Mario Villalobos ◽  
Teresa Pi-Puig ◽  
Nadia Valentina Martínez-Villegas

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 818-818
Author(s):  
K. R. Wall ◽  
C. R. Kerth ◽  
T. R. Whitney ◽  
S. B. Smith ◽  
J. L. Glasscock ◽  
...  

2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


Sign in / Sign up

Export Citation Format

Share Document