Selenium and Glutathione Peroxidase: Essential Nutrient and Antioxidant Component of the Immune System

Author(s):  
Julian E. Spallholz
2003 ◽  
Vol 2003 ◽  
pp. 215-215
Author(s):  
B. R. Cottrill ◽  
D. I. Givens

Selenium (Se) was first recognised as an essential nutrient in 1957. Subsequent research has shown that Se, in the form of selenocysteine, is incorporated into a range of selenoproteins in the body, which are crucial to human and animal health. The best known of these is glutathione peroxidase (GPx), which is involved in protecting cell membranes from oxidative damage by free radicals. Other selenoproteins are essential in the functioning of the immune system, in thyroid hormone metabolism and in reproduction.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
I. Labunets ◽  
A. Rodnichenko ◽  
N. Melnyk ◽  
N. Utko

The search for tools that increase the effectiveness of cell therapy of demyelinating pathology is relevant. They may be preparations that affect the pathogenetic factors of this pathology, in particular, the pineal hormone melatonin.The purpose of the work is to evaluate the involvement of immune system and antioxidant defense in the implementation of the protective effects of melatonin on morpho-functional disorders in the central nervous system induced by neurotoxin cuprizone.Materials and methods. The toxic demyelination model was induced on 129/Sv mice at the age of 3-5 months by adding cuprizone to food for 3 weeks. Since the 7th day of cuprizone administration, melatonin was injected intraperitoneally at 18:00 daily, at a dose of 1 mg/kg. In the brain of mice, the proportion of CD3+, Nestin+ cells and phagocytic macrophages, the content of malondialdehyde and the activity of antioxidant enzymes was determined. Blood serum was tested for thymic hormone thymulin levels. In the animals, we evaluated the structure of the brain and spinal cord neurons by Nissl staining of histological sections as well as analyzed behavioural reactions in the "open field" test.Results. In the brain of the mice received cuprizone, the proportion of CD3+ and Nestin+ cells, active macrophages and malondialdehyde content increases, glutathione peroxidase and glutathione reductase levels decreases. In the brain and spinal cord of the mice with a cuprizone diet, the proportion of altered neurons increases, and motor and emotional activity decreases. The introduction of melatonin results in a decrease in the relative number of CD3+ cells, active macrophages and malondialdehyde content, increased activity of glutathione peroxidase, glutathione reductase and level of thymulin. In such mice, the proportion of unchanged neurons increases as the number of Nestin+ cells decreases and behavioural responses are also improved.Conclusions. The neuroprotective effect of melatonin in demyelinating pathology is realized through the factors of the immune system and oxidative stress. The results may be useful in the development of new biotechnological approaches to the treatment of demyelinating pathology, in particular, multiple sclerosis.


2020 ◽  
Vol 6 (4) ◽  
pp. 305
Author(s):  
Lucas Weba Soares ◽  
Alexandre Melo Bailão ◽  
Célia Maria de Almeida Soares ◽  
Mirelle Garcia Silva Bailão

Zinc is an essential nutrient for all living organisms. However, firm regulation must be maintained since micronutrients also can be toxic in high concentrations. This notion is reinforced when we look at mechanisms deployed by our immune system, such as the use of chelators or membrane transporters that capture zinc, when threatened with pathogens, like fungi. Pathogenic fungi, on the other hand, also make use of a variety of transporters and specialized zinc captors to survive these changes. In this review, we sought to explain the mechanisms, grounded in experimental analysis and described to date, utilized by pathogenic fungi to maintain optimal zinc levels.


2013 ◽  
Vol 4 (6) ◽  
pp. 611-616 ◽  
Author(s):  
Toshihiko Kitajima ◽  
Yasunori Chiba

AbstractThe importance of selenium for organisms can be explained by its existence as selenocysteine in the catalytic centers of glutathione peroxidase and thioredoxin reductase. Another selenoamino acid, selenomethionine, is the major form of selenium in foods, and organisms that require selenium as a nutrient directly metabolize selenomethionine to a reactive form of selenium or store it in general proteins. Selenium is recognized as an essential nutrient for human and animal health; however, its excessive uptake harms mammals and the cytotoxic mechanism of selenium remains unclear. Recent progress in the development of selenium-enriched yeast and selenomethionine-resistant mutant to produce selenomethionine-containing proteins for X-ray crystallography has provided new insights into the molecular mechanism of selenomethionine toxicity. In this review, we describe the metabolism of seleno-compounds in yeast and discuss the cytotoxicity caused by selenomethionine against yeast from a metabolic viewpoint.


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document