cytotoxic mechanism
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Pascal Demange ◽  
Etienne Joly ◽  
Julien Marcoux ◽  
Patrick R. A. Zanon ◽  
Dymytrii Listunov ◽  
...  

ABSTRACTHundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs. Graphical abstract


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 390
Author(s):  
Katharina Ernst ◽  
Marc Landenberger ◽  
Julian Nieland ◽  
Katharina Nørgaard ◽  
Manfred Frick ◽  
...  

The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells. Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2 cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2776
Author(s):  
Sebastian Simu ◽  
Iasmina Marcovici ◽  
Amadeus Dobrescu ◽  
Daniel Malita ◽  
Cristina Adriana Dehelean ◽  
...  

Oral contraceptives (OCs) are widely used due to their efficiency in preventing unplanned pregnancies and treating several human illnesses. Despite their medical value, the toxicity of OCs remains a public concern. Previous studies indicate the carcinogenic potential of synthetic sex hormones and their link to the development and progression of hormone-dependent malignancies such as breast cancer. However, little is known about their influence on the evolution of triple-negative breast carcinoma (TNBC), a malignancy defined by the absence of estrogen, progesterone, and HER2 receptors. This study reveals that the active ingredients of modern OCs, 17β-Ethinylestradiol, Levonorgestrel, and their combination induce differential effects in MDA-MB-231 TNBC cells. The most relevant behavioral changes occurred after the 24 h treatment with 17β-Ethinylestradiol, summarized as follows: (i) decreased cell viability (64.32% at 10 µM); (ii) cell roundness and loss of confluence; (iii) apoptotic aspect of cell nuclei (fragmentation, membrane blebbing); and (iv) inhibited cell migration, suggesting a potential anticancer effect. Conversely, Levonorgestrel was generally associated with a proliferative activity. The association of the two OCs exerted similar effects as 17β-Ethinylestradiol but was less effective. Further studies are necessary to elucidate the hormones’ cytotoxic mechanism of action on TNBC cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Markéta Šašinková ◽  
Petr Heřman ◽  
Aleš Holoubek ◽  
Dita Strachotová ◽  
Petra Otevřelová ◽  
...  

AbstractNucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.


Blood ◽  
2020 ◽  
Vol 136 (18) ◽  
pp. 2065-2079 ◽  
Author(s):  
Jonathan J. Pinney ◽  
Fátima Rivera-Escalera ◽  
Charles C. Chu ◽  
Hannah E. Whitehead ◽  
Karl R. VanDerMeid ◽  
...  

Abstract Macrophage antibody (Ab)-dependent cellular phagocytosis (ADCP) is a major cytotoxic mechanism for both therapeutic unconjugated monoclonal Abs (mAbs) such as rituximab and Ab-induced hemolytic anemia and immune thrombocytopenia. Here, we studied the mechanisms controlling the rate and capacity of macrophages to carry out ADCP in settings of high target/effector cell ratios, such as those seen in patients with circulating tumor burden in leukemic phase disease. Using quantitative live-cell imaging of primary human and mouse macrophages, we found that, upon initial challenge with mAb-opsonized lymphocytes, macrophages underwent a brief burst (<1 hour) of rapid phagocytosis, which was then invariably followed by a sharp reduction in phagocytic activity that could persist for days. This previously unknown refractory period of ADCP, or hypophagia, was observed in all macrophage, mAb, and target cell conditions tested in vitro and was also seen in vivo in Kupffer cells from mice induced to undergo successive rounds of αCD20 mAb-dependent clearance of circulating B cells. Importantly, hypophagia had no effect on Ab-independent phagocytosis and did not alter macrophage viability. In mechanistic studies, we found that the rapid loss of activating Fc receptors from the surface and their subsequent proteolytic degradation were the primary mechanisms responsible for the loss of ADCP activity in hypophagia. These data suggest hypophagia is a critical limiting step in macrophage-mediated clearance of cells via ADCP, and understanding such limitations to innate immune system cytotoxic capacity will aid in the development of mAb regimens that could optimize ADCP and improve patient outcome.


2020 ◽  
Vol 63 (9) ◽  
pp. 5012-5012
Author(s):  
Xiaolong Chen ◽  
Shuangshuang Ji ◽  
Ang Li ◽  
Hanjie Liu ◽  
Hao Fei

2020 ◽  
Vol 21 (7) ◽  
pp. 2406
Author(s):  
Akihiko Sakamoto ◽  
Junpei Sahara ◽  
Gota Kawai ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama ◽  
...  

Excessive accumulation of polyamines causes cytotoxicity, including inhibition of cell growth and a decrease in viability. We investigated the mechanism of cytotoxicity caused by spermidine accumulation under various conditions using an Escherichia coli strain deficient in spermidine acetyltransferase (SAT), a key catabolic enzyme in controlling polyamine levels. Due to the excessive accumulation of polyamines by the addition of exogenous spermidine to the growth medium, cell growth and viability were markedly decreased through translational repression of specific proteins [RMF (ribosome modulation factor) and Fis (rRNA transcription factor) etc.] encoded by members of polyamine modulon, which are essential for cell growth and viability. In particular, synthesis of proteins that have unusual locations of the Shine–Dalgarno (SD) sequence in their mRNAs was inhibited. In order to elucidate the molecular mechanism of cytotoxicity by the excessive accumulation of spermidine, the spermidine-dependent structural change of the bulged-out region in the mRNA at the initiation site of the rmf mRNA was examined using NMR analysis. It was suggested that the structure of the mRNA bulged-out region is affected by excess spermidine, so the SD sequence of the rmf mRNA cannot approach initiation codon AUG.


2020 ◽  
Vol 4 (1) ◽  
pp. 001-008
Author(s):  
Moras Ana Moira ◽  
Steffens Luiza ◽  
Nordio Bruna Eliza ◽  
Saffi Jenifer ◽  
Dallegrave Eliane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document