nissl staining
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 114)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Vol 20 (2) ◽  
pp. 293-299
Author(s):  
Xueliang Gao ◽  
Zhao Wang ◽  
Peilei Jia ◽  
Yapeng Zhao ◽  
Kai Wang ◽  
...  

Purpose: To investigate the protective effect of Crataegus songarica extract (CSCE) against traumatic brain injury (TBI) in rats, and the underlying mechanism of action. Methods: A rat model of TBI was established via tracheal intubation procedure, and the rats were treated with graded doses of CSCE. Neuronal survival was determined by Nissl staining, while neuronal apoptosis was measured using TUNEL-staining. Neurological impairments were determined based on neurological severity score (NSS). Results: Treatment of TBI rats with CSCE enhanced neuronal survival and decreased TUNEL-positive cell fraction in the brain cortex. The treatment prevented elevation of NSS and suppressed mRNA and protein expression levels of IL-6 and TNF-α in brain cortex. Moreover, CSCE treatment prevented TBI-mediated suppression of activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), and attenuated hydrogen peroxide (H2O2) levels in TBI rat brain cortex. Treatment of TBI rats with CSCE down-regulated NF-κB expression, increased Nrf2 expression and up-regulated mRNA expressions of heme oxygenase 1 (HO-1) and quinine oxidoreductase 1 (NQO-1). Conclusion: These results suggest that CSCE prevents TBI-mediated reduction in neuronal survival and inhibits brain cortical neuronal death in rats. It improves NSS and inhibits inflammatory response via activation of Nrf2 pathway and targeting of NF-κB expression. Therefore, CSCE is a potential therapeutic agent for TBI.


Author(s):  
Pengju Zhao ◽  
Hongguang Fu ◽  
Hui Cheng ◽  
Ruijuan Zheng ◽  
Dan Yuan ◽  
...  

Abstract Autism is a common neurodevelopmental disorder that severely affects patients’ quality of life. We aimed to investigate whether acupuncture at Zusanli (ST36) could alleviate the behavior disorder of autistic rats by inhibiting thioredoxin-interacting protein (TXNIP)-mediated activation of NLRP3. An autism model was induced by intraperitoneal injection of pregnant rats with valproic acid (VPA). The pups’ behaviors were analyzed using hot plate, open field, Morris water maze, and 3-chamber social interaction tests. Nissl staining was used to visualize neurons in prefrontal cortex. Levels of TXNIP, NLRP3, interleukin (IL)-1β, and caspase were determined by Western blot or quantitative real-time PCR. After ST36 acupuncture, pain sensitivity, autonomous activity, sociability index, sociability preference index, and learning and memory were improved in the autism model rats. Levels of TXNIP, NLRP3, IL-1β, and caspase 1 were decreased after acupuncture. Interference with TXNIP alleviated the behavior disorders and inhibited NLRP3, caspase 1, and IL-1β levels. In summary, ST36 acupuncture reduced TXNIP expression, inhibited the activation of the NLRP3 inflammasome, and alleviated the behavior disorder related to the prefrontal cortex of the autistic rats. These results point to a potential mechanism for acupuncture-induced improvement of autistic behavioral disorders.


2022 ◽  
Vol 23 (1) ◽  
pp. 571
Author(s):  
Jaegeun Jang ◽  
Ahreum Hong ◽  
Youngcheul Chung ◽  
Byungkwan Jin

The present study investigated the effects of interleukin (IL)-4 on striatal neurons in lipopolysaccharide (LPS)-injected rat striatum in vivo. Either LPS or PBS as a control was unilaterally injected into the striatum, and brain tissues were processed for immunohistochemical and Nissl staining or for hydroethidine histochemistry at the indicated time points after LPS injection. Analysis by NeuN and Nissl immunohistochemical staining showed a significant loss of striatal neurons at 1, 3, and 7 days post LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 days, and was sustained up to 7 days post LPS. Increased levels of IL-4 immunoreactivity were exclusively detected in microglia/macrophages, but not in neurons nor astrocytes. The neutralizing antibody (NA) for IL-4 significantly protects striatal neurons against LPS-induced neurotoxicity in vivo. Accompanying neuroprotection, IL-4NA inhibited activation of microglia/macrophages, production of reactive oxygen species (ROS), ROS-derived oxidative damage and nitrosative stress, and produced polarization of microglia/macrophages shifted from M1 to M2. These results suggest that endogenous IL-4 expressed in LPS-activated microglia/macrophages contributes to striatal neurodegeneration in which oxidative/nitrosative stress and M1/M2 polarization are implicated.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Hyunuk Kang ◽  
Hui Zhou ◽  
Yushan Ye ◽  
Jiangfan Yang ◽  
Zhonghua Liu ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease; tea components have important neuroprotective effects. This article explores the effects and mechanisms of Qingxiang Tiguanyin (Tgy-Q), Nongxiang Tieguanyin (Tgy-N), and Chenxiang Tieguanyin (Tgy-C) extracts on APP/PS1 AD model mice. Morris water maze and new object recognition experiments show that Tieguanyin extracts can effectively enhance the cognitive ability of APP/PS1 mice. H&E staining, Nissl staining, and immunohistochemical staining show that Tieguanyin extracts make nerve cell boundaries and nucleoli become clearer, relieve nucleus pyknosis, and effectively reduce Aβ1-40 and Aβ1-42 in the hippocampus and cortex. They also restore the morphology of microglia and astrocytes. In addition, Tieguanyin extracts can balance the oxidative stress level in the brain of APP/PS1 mice by improving the antioxidant capacity. Western blot results show that Tieguanyin extracts can reduce the expression of NF-κB p65, TNF-α, IL-1β, IL-6, COX-2, and iNOS in mouse brain, which demonstrates that Tieguanyin extracts improves cognitive ability by alleviating inflammation. This article demonstrates for the first time that Tieguanyin extracts can inhibit the excessive activation of the NF-κB p65 signaling pathway and improve the antioxidant capacity in the cerebral cortex and hippocampus, to improve the cognitive ability of APP/PS1 mice. Our results shed light into the beneficial of Tieguanyin tea extracts on preventing and alleviating AD diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Han ◽  
Li Jiang ◽  
Xiaojie Song ◽  
Tianyi Li ◽  
Hengsheng Chen ◽  
...  

Neurogenesis and angiogenesis are widely recognized to occur during epileptogenesis and important in brain development. Because vascular endothelial growth factor (VEGF) is a critical neurovascular target in neurological diseases, its effect on neurogenesis, microvascular remodeling and epileptogenesis in the immature brain after lithium-pilocarpine-induced status epilepticus (SE) was investigated. The dynamic changes in and the correlation between hippocampal neurogenesis and microvascular remodeling after SE and the influence of VEGF or SU5416 injection into the lateral ventricles at different stages after SE on neurogenesis and microvascular remodeling through regulation of VEGF expression were assessed by immunofluorescence and immunohistochemistry. Western blot analysis revealed that the VEGFR2 signaling pathway promotes phosphorylated ERK and phosphorylated AKT expression. The effects of VEGF expression regulation at different stages after SE on pathological changes in hippocampal structure and spontaneous recurrent seizures (SRS) were evaluated by Nissl staining and electroencephalography (EEG). The results showed that hippocampal neurogenesis after SE is related to microvascular regeneration. VEGF promotion in the acute period and inhibition in the latent period after SE alleviates loss of hippocampal neuron, abnormal vascular regeneration and inhibits neural stem cells (NSCs) ectopic migration, which may effectively alleviate SRS severity. Interfering with VEGF via the AKT and ERK pathways in different phases after SE may be a promising strategy for treating and preventing epilepsy in children.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sarah Woelfle ◽  
Tobias M. Boeckers

The hippocampal formation consists of the Ammon’s horn (cornu Ammonis with its regions CA1-4), dentate gyrus, subiculum, and the entorhinal cortex. The rough extension of the regions CA1-3 is typically defined based on the density and size of the pyramidal neurons without clear-cut boundaries. Here, we propose the vesicular glutamate transporter 1 (VGLUT1) as a molecular marker for the CA3 region. This is based on its strong labeling of the stratum lucidum (SL) in fluorescently stained human hippocampus sections. VGLUT1 puncta of the intense SL band co-localize with synaptoporin (SPO), a protein enriched in mossy fibers (MFs). Owing to its specific intensity profile throughout all hippocampal layers, VGLUT1 could be implemented as a pendant to Nissl-staining in fluorescent approaches with the additional demarcation of the SL. Furthermore, by high-resolution confocal microscopy, we detected VGLUT2 in the human hippocampus, thus reconciling two previous studies. Finally, by VGLUT1/SPO co-staining, we provide evidence for the existence of infrapyramidal MFs in the human hippocampus and we show that SPO expression is not restricted to MF synapses as demonstrated for rodent tissue.


Author(s):  
Hui Gan ◽  
Li Zhang ◽  
Hui Chen ◽  
Han Xiao ◽  
Lu Wang ◽  
...  

AbstractThe NLRC4 inflammasome, a member of the nucleotide-binding and oligomerization domain-like receptor (NLR) family, amplifies inflammation by facilitating the processing of caspase-1, interleukin (IL)–1β, and IL-18. We explored whether NLRC4 knockdown alleviated inflammatory injury following intracerebral hemorrhage (ICH). Furthermore, we investigated whether NLRC4 inflammasome activation can be adjusted by the regulator of G protein signaling 2/leucine-rich repeat kinase-2 pathway. Fifty microliters of arterial blood was drawn and injected into the basal ganglion to simulate the ICH model. NLRC4 small interfering RNAs (siRNAs) were utilized to knockdown NLRC4. An LRRK2 inhibitor (GNE7915) was injected into the abdominal cavity. Short hairpin (sh) RNA lentiviruses and lentiviruses containing RGS2 were designed and applied to knockdown and promote RGS2 expression. Neurological functions, brain edema, Western blot, enzyme-linked immunosorbent, hematoxylin and eosin staining, Nissl staining, immunoprecipitation, immunofluorescence assay and Evans blue dye extravasation and autofluorescence assay were evaluated. It was shown that the NLRC4 inflammasome was activated following ICH injury. NLRC4 knockdown extenuated neuronal death, damage to the blood-brain barrier, brain edema and neurological deficiency 3 days after ICH. NLRC4 knockdown reduced myeloperoxidase (MPO) cells as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-18 following ICH. GNE7915 reduced pNLRC4 and NLRC4 inflammasome activation. RGS2 suppressed the interaction of LRRK2 and NLRC4 and NLRC4 inflammasome activation by regulating pLRRK2. Our study demonstrated that the NLRC4 inflammasome may aggravate the inflammatory injury induced by ICH and that RGS2/LRRK2 may relieve inflammatory injury by restraining NLRC4 inflammasome activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ye-Hui Liao ◽  
Mo-Xian Chen ◽  
Shao-Chun Chen ◽  
Kai-Xuan Luo ◽  
Bin Wang ◽  
...  

Although neurocircuits can be activated by focused ultrasound stimulation, it is unclear whether this is also true for spinal cord neurocircuits. In this study, we used low-intensity focused ultrasound (LIFU) to stimulate lumbar 4–lumbar 5 (L4–L5) segments of the spinal cord of normal Sprague Dawley rats with a clapper. The activation of the spinal cord neurocircuits enhanced soleus muscle contraction as measured by electromyography (EMG). Neuronal activation and injury were assessed by EMG, western blotting (WB), immunofluorescence, hematoxylin and eosin (H&E) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), somatosensory evoked potentials (SEPs), motor evoked potentials (MEPs), and the Basso–Beattie–Bresnahan locomotor rating scale. When the LIFU intensity was more than 0.5 MPa, LIFU stimulation induced soleus muscle contraction and increased the EMG amplitudes ( P < 0.05 ) and the number of c-fos- and GAD65-positive cells ( P < 0.05 ). When the LIFU intensity was 3.0 MPa, the LIFU stimulation led to spinal cord damage and decreased SEP amplitudes for electrophysiological assessment ( P < 0.05 ); this resulted in coagulation necrosis, structural destruction, neuronal loss in the dorsal horn by H&E and Nissl staining, and increased expression of GFAP, IL-1β, TNF-α, and caspase-3 by IHC, ELISA, and WB ( P < 0.05 ). These results show that LIFU can activate spinal cord neurocircuits and that LIFU stimulation with an irradiation intensity ≤1.5 MPa is a safe neurostimulation method for the spinal cord.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Yang ◽  
Ruonan Wang ◽  
Hailun Zhou ◽  
Li Wang ◽  
Rui Wang ◽  
...  

Learning and memory impairment is a common clinical symptom of aging and nervous system injuries, and seriously affects quality of life. Memory impairment is associated with increased oxidative stress (OS) and inflammatory response. β-hydroxybutyrate (BHBA) is a water-soluble endogenous small-molecule ketone body that easily crosses the blood-brain barrier and has shown neuroprotection activities. In this study, we investigated the effects and mechanisms of BHBA on D-galactose (D-gal)-induced memory impairment in mice by in vitro and in vivo experiments. BHBA was administered intragastrically to D-gal-injured C57BL/6 mice for 42 days. Water maze performance, the morphology of the hippocampus with Nissl staining, the ACh content, OS, and inflammation status were examined. To further investigate the mechanism, hippocampal neuronal cells (HT22) were treated with BHBA with or without the SIRT1 inhibitor or small interfering RNAs against sirt1 (si-SIRT1) before incubation with D-gal. BHBA significantly improved water maze performance; increased the ACh content, SOD activity, and SIRT1 expression; and decreased AChE and LDH activity, ROS, MDA, IL-1β, TNF-α contents, and NLRP3 expression. Further studies with the SIRT inhibitor or siRNAs against sirt1 reversed the above effects of BHBA. Collectively, BHBA inhibited hippocampal OS and the inflammation process to alleviate learning and memory impairment through activating the SIRT1 pathway in D-gal-injured mice, suggesting that BHBA could be a potential option for drug development of learning and memory impairment induced by nervous system injuries.


2021 ◽  
Vol 22 (22) ◽  
pp. 12533
Author(s):  
Marta Gómez-Almería ◽  
Sonia Burgaz ◽  
Carlos Costas-Insua ◽  
Carmen Rodríguez-Cueto ◽  
Irene Santos-García ◽  
...  

In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/− mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/− double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/− mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/− mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.


Sign in / Sign up

Export Citation Format

Share Document