Dislocation Generation in Pure Aluminum at Quasistatic and Shock Loading

Author(s):  
Torbjörn Svensson
1975 ◽  
Vol 9 (1) ◽  
pp. 31-33 ◽  
Author(s):  
V.R. Parameswaran

2010 ◽  
Vol 160 ◽  
pp. 57-62
Author(s):  
Alankar Alankar ◽  
Ioannis N. Mastorakos ◽  
David P. Field

A dislocation density based crystal plasticity finite element model (CPFEM) is developed for aluminum in which dislocation densities evolve on all octahedral slip systems. Based upon the kinematics of crystal deformation and dislocation interaction laws, dislocation generation and annihilation are modeled. The CPFEM model is calibrated for pure aluminum using experimental stress-strain curves of pure aluminum single crystal from literature. Crystallographic texture predictions in plane-strain compression of aluminum are validated against experimental observations in the literature. The framework is implemented in ABAQUS with user interface UMAT subroutine. Dislocation densities evolve and are tracked as state variables in the model, leading to spatially inhomogeneous dislocation densities that show patterning in the dislocation structures.


2011 ◽  
Vol 702-703 ◽  
pp. 196-199 ◽  
Author(s):  
Alankar Alankar ◽  
David P. Field

In this work microstructure evolution in a columnar polycrystal of pure aluminum is studied using a microstructure sensitive crystal plasticity finite element model (CPFEM). In the model, based upon the kinematics of crystal deformation and dislocation interaction laws, dislocation generation and annihilation are modeled. Dislocation densities evolve in the form of closed loops and are tracked as state variables, leading to spatially inhomogeneous dislocation densities that show patterning in the dislocation structures. The hardening law is based on the strength of junctions between dislocations on specific slip systems. The CPFEM model is able to show the anisotropic hardening behavior of aluminum single crystals. The measures of accumulated plastic strain in the experiment and the simulation are compared with varying degrees of success.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
D. Faulkner ◽  
G.W. Lorimer ◽  
H.J. Axon

It is now generally accepted that meteorites are fragments produced by the collision of parent bodies of asteroidal dimensions. Optical metallographic evidence suggests that there exists a group of iron meteorites which exhibit structures similar to those observed in explosively shock loaded iron. It seems likely that shock loading of meteorites could be produced by preterrestrial impact of their parent bodies as mentioned above.We have therefore looked at the defect structure of one of these meteorites (Trenton) and compared the results with those made on a) an unshocked ‘standard’ meteorite (Canyon Diablo)b) an artificially shocked ‘standard’ meteorite (Canyon Diablo) andc) an artificially shocked specimen of pure α-iron.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
A. Christou ◽  
J. V. Foltz ◽  
N. Brown

In general, all BCC transition metals have been observed to twin under appropriate conditions. At the present time various experimental reports of solid solution effects on BCC metals have been made. Indications are that solid solution effects are important in the formation of twins. The formation of twins in metals and alloys may be explained in terms of dislocation mechanisms. It has been suggested that twins are nucleated by the achievement of local stress-concentration of the order of 15 to 45 times the applied stress. Prietner and Leslie have found that twins in BCC metals are nucleated at intersections of (110) and (112) or (112) and (112) type of planes.In this paper, observations are reported of a transmission microscope study of the iron manganese series under conditions in which twins both were and were not formed. High strain rates produced by shock loading provided the appropriate deformation conditions. The workhardening mechanisms of one alloy (Fe - 7.37 wt% Mn) were studied in detail.


Sign in / Sign up

Export Citation Format

Share Document