Derivation of Sea Ice Concentration, Age and Surface Temperature from Multispectral Microwave Radiances Obtained with the Nimbus-7 Scanning Multichannel Microwave Radiometer

1981 ◽  
pp. 823-829 ◽  
Author(s):  
P. Gloersen ◽  
D. Cavalieri ◽  
W. J. Campbell
2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2019 ◽  
Vol 12 (1) ◽  
pp. 321-342 ◽  
Author(s):  
Julien Beaumet ◽  
Gerhard Krinner ◽  
Michel Déqué ◽  
Rein Haarsma ◽  
Laurent Li

Abstract. Future sea surface temperature and sea-ice concentration from coupled ocean–atmosphere general circulation models such as those from the CMIP5 experiment are often used as boundary forcings for the downscaling of future climate experiments. Yet, these models show some considerable biases when compared to the observations over present climate. In this paper, existing methods such as an absolute anomaly method and a quantile–quantile method for sea surface temperature (SST) as well as a look-up table and a relative anomaly method for sea-ice concentration (SIC) are presented. For SIC, we also propose a new analogue method. Each method is objectively evaluated with a perfect model test using CMIP5 model experiments and some real-case applications using observations. We find that with respect to other previously existing methods, the analogue method is a substantial improvement for the bias correction of future SIC. Consistency between the constructed SST and SIC fields is an important constraint to consider, as is consistency between the prescribed sea-ice concentration and thickness; we show that the latter can be ensured by using a simple parameterisation of sea-ice thickness as a function of instantaneous and annual minimum SIC.


2020 ◽  
Vol 12 (7) ◽  
pp. 1060 ◽  
Author(s):  
Lise Kilic ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Georg Heygster ◽  
Victor Pellet ◽  
...  

Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.


Author(s):  
K. Cho ◽  
R. Nagao ◽  
K. Naoki

<p><strong>Abstract.</strong> Passive microwave radiometer AMSR2 was launched by JAXA in May 2012 on-board GCOM-W satellite. The antenna diameter of AMSR2 is 2.0&amp;thinsp;m which provide highest spatial resolution as a passive microwave radiometer in space. The sea ice concentration images derived from AMSR2 data allow us to monitor the detailed sea ice distributions of whole globe every day. The AMSR bootstrap algorithm developed by Dr. Josefino Comiso is used as the standard algorithm for calculating sea ice concentration from AMSR2 data. Under the contract with JAXA, the authors have been evaluating the performance of the algorithm. The sea ice concentration estimated from AMSR2 data were evaluated using MODIS data observed from Aqua satellite within few minutes after AMSR2 observation from GCOM-W. Since the spatial resolution of MODIS is much higher than that of AMSR2, under the cloud free condition, the ice concentration corresponds to the size of a pixel of AMSR2 can be calculated much accurately with MODIS data. The procedures of the evaluation are as follows. Firstly, MODIS band 1 reflectance were binarized to discriminate sea ice(1) from open water(0) and sea ice concentration of each pixel size of AMSR2 were calculated. In calculating sea ice concentration from MODIS data, the selection of the threshold level of MODIS band 1 reflectance is critical. Through the detailed evaluation, the authors selected 5% as the optimum threshold level. Then the AMSR2 sea ice concentration of each pixel was compared with the sea ice concentration calculated from MODIS data. The result suggested the possibility of estimating sea ice concentration from AMSR2 data with less than 10% error under the cloud free condition.</p>


2021 ◽  
Author(s):  
Bayoumy Mohamed ◽  
Frank Nilsen ◽  
Ragnheid Skogseth

&lt;p&gt;Sea ice loss in the Arctic region is an important indicator for climate change. Especially in the Barents Sea, which is expected to be free of ice by the mid of this century (Onarheim et al., 2018). Here, we analyze 38 years (1982-2019) of daily gridded sea surface temperature (SST) and sea ice concentration (SIC) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) project. These data sets have been used to investigate the seasonal cycle and linear trends of SST and SIC, and their spatial distribution in the Barents Sea. From the SST seasonal cycle analysis, we have found that most of the years that have temperatures above the climatic mean (1982-2019) were recorded after 2000. This confirms the warm transition that has taken place in the Barents Sea over the last two decades. The year 2016 was the warmest year in both winter and summer during the study period. &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Results from the linear trend analysis reveal an overall statistically significant warming trend for the whole Barents Sea of about 0.33&amp;#177;0.03 &amp;#176;C/decade, associated with a sea ice reduction rate of about -4.9&amp;#177;0.6 %/decade. However, the SST trend show a high spatial variability over the Barents Sea. The highest SST trend was found over the eastern part of the Barents Sea and south of Svalbard (Storfjordrenna Trough), while the Northern Barents Sea shows less distinct and non-significant trends. The largest negative trend of sea ice was observed between Novaya Zemlya and Franz Josef Land. Over the last two decades (2000-2019), the data show an amplified warming trend in the Barents Sea where the SST warming trend has increased dramatically (0.46&amp;#177;0.09 &amp;#176;C/decade) and the SIC is here decreasing with rate of about -6.4&amp;#177;1.5 %/decade.&amp;#160; Considering the current development of SST, if this trend persists, the Barents Sea annual mean SST will rise by around 1.4 &amp;#176;C by the end of 2050, which will have a drastic impact on the loss of sea ice in the Barents Sea.&amp;#160; &amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Keywords: Sea surface temperature; Sea ice concentration; Trend analysis; Barents Sea&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document