High-Field Critical Current and Mechanical Properties Of In Situ Processed V3Ga Superconductors

Author(s):  
H. Kumakura ◽  
K. Togano ◽  
K. Tachikawa
1992 ◽  
Vol 7 (6) ◽  
pp. 1317-1327 ◽  
Author(s):  
J.E. Tkaczyk ◽  
C.L. Briant ◽  
J.A. DeLuca ◽  
E.L. Hall ◽  
P.L. Karas ◽  
...  

Three processing routes that generate uniaxial alignment but otherwise yield very different microstructure and critical current are compared. Fine grain size and c-axis alignment are obtained in magnetically aligned ceramics, pyrolyzed thick films, and in situ deposited thin films. The dense, well-aligned microstructure of the in situ process produces the highest zero field critical current Jc > 104 A/cm2 at 77 K. However, the critical current is suppressed in low magnetic field, suggesting that uniaxial alignment is not sufficient to avoid Josephson-type intergranular coupling. Above 1 T, the critical current of the aligned ceramic dominates in spite of its less ideal microstructure. The critical current in this high field region is one to two orders of magnitude greater than that of nonaligned material. This result implies the existence of a 3-d percolative network of strong links.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

Sign in / Sign up

Export Citation Format

Share Document