Effect Mechanism of in Situ Nano-Intermetallic Manipulation on the Multilevel Microstructure and Mechanical Properties of Al-13Si Alloys

2020 ◽  
Author(s):  
Tao-Tao Duan ◽  
Feng Qiu ◽  
Lin Zhu ◽  
Tao-Tao Li ◽  
Hong-Yu Yang ◽  
...  
Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100769 ◽  
Author(s):  
Tao-Tao Duan ◽  
Feng Qiu ◽  
Lin Zhu ◽  
Tao-Tao Li ◽  
Hong-Yu Yang ◽  
...  

2021 ◽  
Vol 212 ◽  
pp. 108681
Author(s):  
Diqiang Liu ◽  
Aijun Zhang ◽  
Jiangang Jia ◽  
Jiesheng Han ◽  
Junyan Zhang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1556
Author(s):  
Zhao Li ◽  
Run Wu ◽  
Mingwei Li ◽  
Song-Sheng Zeng ◽  
Yu Wang ◽  
...  

High boron steel is prone to brittle failure due to the boride distributed in it with net-like or fishbone morphology, which limit its applications. The Quenching and Partitioning (Q&P) heat treatment is a promising process to produce martensitic steel with excellent mechanical properties, especially high toughness by increasing the volume fraction of retained austensite (RA) in the martensitic matrix. In this work, the Q&P heat treatment is used to improve the inherent defect of insufficient toughness of high boron steel, and the effect mechanism of this process on microstructure transformation and the change of mechanical properties of the steel has also been investigated. The high boron steel as-casted is composed of martensite, retained austensite (RA) and eutectic borides. A proper quenching and partitioning heat treatment leads to a significant change of the microstructure and mechanical properties of the steel. The net-like and fishbone-like boride is partially broken and spheroidized. The volume fraction of RA increases from 10% in the as-cast condition to 19%, and its morphology also changes from blocky to film-like. Although the macro-hardness has slightly reduced, the toughness is significantly increased up to 7.5 J·cm−2, and the wear resistance is also improved.


Sign in / Sign up

Export Citation Format

Share Document