Cryogenic Properties of Austenitic Stainless Steels for Superconducting Magnet

Author(s):  
Kiyohiko Nohara ◽  
Tsunehiko Kato ◽  
Terufumi Sasaki ◽  
Shigeharu Suzuki ◽  
Yutaka Ono

Author(s):  
Yukio Takahashi ◽  
Shigeru Tado ◽  
Kazunori Kitamura ◽  
Masataka Nakahira ◽  
Junji Ohmori ◽  
...  

Superconducting magnets are structures which have an important role in Tokamak-type fusion reactor plants. They are huge and complicated structures exposed to very low temperature, 4K and the methods for keeping their integrity need to be newly developed. To maintain their structural integrity during the plant operation, a procedure for structural design was developed as a part of JSME Construction Standard for Superconducting Magnet. General structures and requirements of this procedure basically follow those of class 1 and class 2 components in light water reactor plants as specified in Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, and include the evaluation of primary stress, secondary stress and fatigue damage. However, various new aspects have been incorporated considering the features of superconducting magnet structures. They can be summarized as follows: (i) A new procedure to determine allowable stress intensity value was employed to take advantage of the excellent property of newly developed austenitic stainless steels. (ii) Allowable stress system was simplified considering that only austenitic stainless steels and a nickel-based alloy are planned to be used. (iii) A design fatigue curve at 4K was developed for austenitic stainless steels. (iv) In addition to the conventional fatigue assessment based on design fatigue curves, guidelines for fatigue assessment based on crack growth prediction were added as a non-mandatory appendix to provide a tool of assurance for welded joints which are difficult to evaluate nondestructively during the service.



Author(s):  
H. Nakajima ◽  
K. Hamada ◽  
K. Okuno ◽  
K. Hada ◽  
E. Tada

A new design code has been developed for construction and operation/maintenance of the International Thermonuclear Experimental Reactor (ITER). A superconducting magnet system is one of the key components of ITER and its design code includes new cryogenic materials and design approach with taking account of unique features of a performance of the superconducting magnet. The new materials are nitrogen strengthened austenitic stainless steels, which have a yield strength (Sy) of over 1000 MPa and fracture toughness (KIc) of over 200 MP√m at liquid helium temperature (4K). The feature of the design approach is use of the allowable stress defined by only 2/3 Sy measured at 4K. A concept and reliability of the new design approach using new cryogenic materials for the ITER superconducting magnet system are discussed in this paper.



Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.



Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.



2015 ◽  
Vol 57 (7-8) ◽  
pp. 597-601 ◽  
Author(s):  
Peeraya Pipatnukun ◽  
Panyawat Wangyao ◽  
Gobboon Lothongkum


Alloy Digest ◽  
2011 ◽  
Vol 60 (1) ◽  

Abstract EPRI P87 is a MMA electrode designed for dissimilation joints between austenitic stainless steels (i.e. 304H) and a creep resisting CrMo alloy (i.e. P91). This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on joining. Filing Code: Ni-685. Producer or source: Metrode Products Ltd.



Alloy Digest ◽  
1961 ◽  
Vol 10 (9) ◽  

Abstract Carpenter Stainless 304+B is similar to conventional Type 304 with the addition of boron to give it a much higher thermal neutron absorption cross-section than other austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-121. Producer or source: Carpenter.



Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.



Alloy Digest ◽  
1996 ◽  
Vol 45 (9) ◽  

Abstract Avesta Sheffield SAF 2507 is an austenitic/ferritic duplex stainless steel with very high strength. The alloy has a lower coefficient of thermal expansion and a higher thermal conductivity than austenitic stainless steels. The alloy has a high resistance to pitting, crevice, and general corrosion; it has a very high resistance to chloride stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-652. Producer or source: Avesta Sheffield Inc.



Sign in / Sign up

Export Citation Format

Share Document