Traveling Wavefronts in Lattice Differential Equations with Time Delay and Global Interaction

Author(s):  
Shiwang Ma ◽  
Xingfu Zou
Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Qingfeng Zhu ◽  
Yufeng Shi ◽  
Jiaqiang Wen ◽  
Hui Zhang

This paper is concerned with a type of time-symmetric stochastic system, namely the so-called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward equations are delayed doubly stochastic differential equations (SDEs) and the backward equations are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many processes depends on both their current state and historical state, and these processes can usually be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum differential game for doubly stochastic systems with time delay is studied in this paper. A necessary condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore, the above results are applied to the study of nonzero sum differential games for linear quadratic backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit expression of Nash equilibrium points for such game problems is established.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402092211
Author(s):  
Sami Ullah Khan ◽  
Ishtiaq Ali

The numerical techniques are regarded as the backbone of modern research. In literature, the exact solution of time delay differential models are hardly achievable or impossible. Therefore, numerical techniques are the only way to find their solution. In this article, a novel numerical technique known as Legendre spectral collocation method is used for the approximate solution of time delay differential system. Legendre spectral collocation method and their properties are applied to determined the general procedure for solving time delay differential system with detail error and convergence analysis. The method first convert the proposed system to a system of ordinary differential equations and then apply the Legendre polynomials to solve the resultant system efficiently. Finally, some numerical test problems are given to confirm the efficiency of the method and were compared with other available numerical schemes in the literature.


Sign in / Sign up

Export Citation Format

Share Document