Semantic Word Similarity Learned from Heterogenous Knowledge Bases

Author(s):  
Yiling Liu ◽  
Yangsheng Ji ◽  
Chong Gu ◽  
Shouling Cui ◽  
Jiangtao Jia
2021 ◽  
pp. 1-29
Author(s):  
Dongqiang Yang ◽  
Yanqin Yin

Abstract Modelling semantic similarity plays a fundamental role in lexical semantic applications. A natural way of calculating semantic similarity is to access handcrafted semantic networks, but similarity prediction can also be anticipated in a distributional vector space. Similarity calculation continues to be a challenging task, even with the latest breakthroughs in deep neural language models. We first examined popular methodologies in measuring taxonomic similarity, including edge-counting that solely employs semantic relations in a taxonomy, as well as the complex methods that estimate concept specificity. We further extrapolated three weighting factors in modelling taxonomic similarity. To study the distinct mechanisms between taxonomic and distributional similarity measures, we ran head-to-head comparisons of each measure with human similarity judgements from the perspectives of word frequency, polysemy degree and similarity intensity. Our findings suggest that without fine-tuning the uniform distance, taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity; in contrast to distributional semantics, edge-counting is free from sense distribution bias in use and can measure word similarity both literally and metaphorically; the synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning. It appears that a large gap still exists on computing semantic similarity among different ranges of word frequency, polysemous degree and similarity intensity.


1994 ◽  
Vol 33 (05) ◽  
pp. 454-463 ◽  
Author(s):  
A. M. van Ginneken ◽  
J. van der Lei ◽  
J. H. van Bemmel ◽  
P. W. Moorman

Abstract:Clinical narratives in patient records are usually recorded in free text, limiting the use of this information for research, quality assessment, and decision support. This study focuses on the capture of clinical narratives in a structured format by supporting physicians with structured data entry (SDE). We analyzed and made explicit which requirements SDE should meet to be acceptable for the physician on the one hand, and generate unambiguous patient data on the other. Starting from these requirements, we found that in order to support SDE, the knowledge on which it is based needs to be made explicit: we refer to this knowledge as descriptional knowledge. We articulate the nature of this knowledge, and propose a model in which it can be formally represented. The model allows the construction of specific knowledge bases, each representing the knowledge needed to support SDE within a circumscribed domain. Data entry is made possible through a general entry program, of which the behavior is determined by a combination of user input and the content of the applicable domain knowledge base. We clarify how descriptional knowledge is represented, modeled, and used for data entry to achieve SDE, which meets the proposed requirements.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 327-333 ◽  
Author(s):  
F. Buekens ◽  
G. De Moor ◽  
A. Waagmeester ◽  
W. Ceusters

AbstractNatural language understanding systems have to exploit various kinds of knowledge in order to represent the meaning behind texts. Getting this knowledge in place is often such a huge enterprise that it is tempting to look for systems that can discover such knowledge automatically. We describe how the distinction between conceptual and linguistic semantics may assist in reaching this objective, provided that distinguishing between them is not done too rigorously. We present several examples to support this view and argue that in a multilingual environment, linguistic ontologies should be designed as interfaces between domain conceptualizations and linguistic knowledge bases.


2016 ◽  
pp. 141-149
Author(s):  
S.V. Yershov ◽  
◽  
R.М. Ponomarenko ◽  

Parallel tiered and dynamic models of the fuzzy inference in expert-diagnostic software systems are considered, which knowledge bases are based on fuzzy rules. Tiered parallel and dynamic fuzzy inference procedures are developed that allow speed up of computations in the software system for evaluating the quality of scientific papers. Evaluations of the effectiveness of parallel tiered and dynamic schemes of computations are constructed with complex dependency graph between blocks of fuzzy Takagi – Sugeno rules. Comparative characteristic of the efficacy of parallel-stacked and dynamic models is carried out.


2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


2010 ◽  
Vol 9 (4) ◽  
pp. 489-493 ◽  
Author(s):  
Sebastian Marius Rosu ◽  
George Dragoi ◽  
Costel Emil Cotet ◽  
Luminita Rosu

2020 ◽  
Author(s):  
Matheus Pereira Lobo

This paper is about highlighting two categories of knowledge bases, one built as a repository of links, and other based on units of knowledge.


2012 ◽  
Vol 12 ◽  
Author(s):  
Amanda Post Silveira

This is a preliminary study in which we investigate the acquisition of English as second language (L2[1]) word stress by native speakers of Brazilian Portuguese (BP, L1[2]). In this paper, we show results of a multiple choice forced choice perception test in which native speakers of American English and native speakers of Dutch judged the production of English words bearing pre-final stress that were both cognates and non-cognates with BP words. The tokens were produced by native speakers of American English and by Brazilians that speak English as a second language. The results have shown that American and Dutch listeners were consistent in their judgments on native and non-native stress productions and both speakers' groups produced variation in stress in relation to the canonical pattern. However, the variability found in American English points to the prosodic patterns of English and the variability found in Brazilian English points to the stress patterns of Portuguese. It occurs especially in words whose forms activate neighboring similar words in the L1. Transfer from the L1 appears both at segmental and prosodic levels in BP English. [1] L2 stands for second language, foreign language, target language. [2] L1 stands for first language, mother tongue, source language.


Sign in / Sign up

Export Citation Format

Share Document