Bio-Based Packaging Materials for Controlled Release of Active Compounds

Author(s):  
Matteo Alessandro Del Nobile ◽  
Amalia Conte
2021 ◽  
Author(s):  
Ouassef Nahi ◽  
Alexander N. Kulak ◽  
Thomas Kress ◽  
Yi-Yeoun Kim ◽  
Ola G. Grendal ◽  
...  

Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds.


Author(s):  
Arezou Khezerlou ◽  
Milad Tavassoli ◽  
Mahmood Alizadeh Sani ◽  
Ali Ehsani ◽  
David Julian McClements

There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges are being overcome by incorporating the bioactive compounds into nanoparticles, which are then introducing into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. This article reviews the different kinds of nanocarriers available for loading active compounds into these types of materials, and then discusses their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of the packaging materials. Furthermore, this article highlights the different kinds of bioactive compounds that can be incorporated into biopolymer-based packaging.


2021 ◽  
Author(s):  
Thabang N. Mphateng ◽  
Antonio B. Mapossa ◽  
James Wesley-Smith ◽  
Shatish Ramjee ◽  
Walter W Focke

Abstract This study aimed to develop cellulose-based polymer matrices as controlled release devices for plant-based insect repellents and attractants, with the aim of finding sustainable and environmentally friendly pest control methods for agricultural applications. Citronellol, terpineol and methyl salicylate were the selected active compounds for this study. Their compatibility with cellulose diacetate was predicted using Hansen Solubility Parameters, which predicted terpineol as the most compatible with cellulose diacetate, followed by methyl salicylate and citronellol. This was consistent with the plasticization efficiency trend from DMA results of solvent cast cellulose diacetate films containing the active compounds. The chemical identity of the films and cellulose diacetate-active compound intermolecular interactions were verified by FTIR. TGA demonstrated the thermal stability of cellulose diacetate/active compound/clay formulations at temperatures not exceeding 170 °C. Cellulose diacetate/organoclay nanocomposite matrices containing the active compounds at 35 wt-% were prepared by twin screw extrusion compounding, with the active compounds also functioning as plasticizers. The amount of active compound in the strands was determined by solvent extraction and TGA. Both methods showed that small amounts of active compound were lost during the compounding process. SEM demonstrated the effect of organoclay on the internal morphology of the matrix, whereas TEM showed clay dispersion and intercalation within the matrix. The matrix served as a reservoir for the active compounds while simultaneously controlling their release into the environment. Release profiles, obtained through oven ageing at 40 °C for 70 days, were fitted to existing Log-logistic and Weibull models, and novel Diffusion and Modified Weibull release models. Citronellol was released the fastest, followed by methyl salicylate and terpineol. The findings suggest that cellulose diacetate/organoclay strands are promising controlled-release matrices for pest control purposes.


NIR news ◽  
2017 ◽  
Vol 28 (2) ◽  
pp. 21-24 ◽  
Author(s):  
Stefania Barzaghi ◽  
Katia Cremonesi ◽  
Tiziana Maria Piera Cattaneo

Food packaging plays an active role in the environment/packaging/food system, and new solutions take into account new concepts of smart, active, and/or eco-friendly food packaging materials. On this point of view, the active packaging system should be capable of interacting with the food, for instance by the release of active molecules that will provide protection against microbial spoilage, and simultaneously be ‘natural’. A full exploitation of the antimicrobial and antioxidant properties of propolis, in order to achieve a significant prolongation of the shelf-life, can meet these needs. Moreover, fast methods able for classifying, sorting, and identifying the quality and the stability characteristics associated with the different materials are requested along the food chain in order to validate their properties. This study aimed the identification of bioactive compounds from Italian propolis in smart packaging materials by applying the aquaphotomics approach. The Aquagrams results highlighted that the absorption differences at 1410 nm are able to identify the paper sheets obtained by the incorporation of the active compounds. A second Aquagrams plot was built up for sheets measured on polythene layer. Results showed different water patterns at 1438, 1440, and from 1474 to 1518 nm. These data confirm that the water absorption in NIR range can be affected by the presence of chemical groups derived from the active compounds of propolis, which are able to interact with water spectral response.


Sign in / Sign up

Export Citation Format

Share Document