Effects of Mounting Methods on Temperature Sensor Accuracy Below 10K

1992 ◽  
pp. 619-626 ◽  
Author(s):  
Theodore A. Kobel ◽  
Maksymilian A. Kozyrczak ◽  
S. W. Schwenterly ◽  
William M. Bell
Water ◽  
2013 ◽  
Vol 5 (4) ◽  
pp. 1622-1637 ◽  
Author(s):  
Matthew Johnson ◽  
Robert Wilby

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Hyesoo Jang ◽  
Jinesh Narangaparambil ◽  
Kartik Goyal ◽  
Curtis Hill

Abstract The flexible sensor has the capability to be mounted on any curved surfaces of applications and be used for portable devices. Additively printed sensors have received attention owing to their compact design and ability of application to non-planar surfaces. Wearable applications require capability of integration into a variety of surfaces with ability to flex, fold, twist and stretch under the stresses of daily motion. There is scarcity of data on the interaction of the process parameters with the realized performance. In addition, there is need for data focused on sensor accuracy, repeatability, and reliability. In this study, experimental analysis on function of the fabricated sensing board is conducted. The temperature sensors are made by direct write printing method with nScrypt printer. A calibration of the sensors has been conducted to confirm that resistance is well related to actual temperature and find TCR (temperature coefficient to resistance). The evolution of resistance has been correlated with the environmental temperature. The sensor hysteresis has been quantified using upswing and downswing of the environmental temperature. In addition, the effect of humidity on the temperature sensor accuracy and performance has been quantified. The effect of a polymide coat on the sensor to prevent humidity effects has also been quantified.


1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

Author(s):  
Mukesh Mahajan ◽  
Astha Dubey ◽  
Samruddhi Desai ◽  
Kaveri Netawate

This paper reviews basically about Bluetooth based home automation system. It is controlled by PIC microcontroller. Home automation can be defined as the ability to perform tasks automatically and monitor or change status remotely. These include tasks such as turning off lights in the room, locking doors via smartphone, automate air condition systems and appliances which help in the kitchen. Now a days several wireless devices are available such as Bluetooth, Zigbee and GSM. Since Bluetooth is low in cost than the other two and hence is used more. In this paper we have described the methods of automating different home appliances using Bluetooth and pic microcontroller. Different sensors are involved in this system to advance and make it smarter. Sensors such as temperature sensor, liquid sensors, humidity sensor etc. can be used.


2020 ◽  
Vol 3 (2) ◽  
pp. 103-113
Author(s):  
Rachmad Ikhsan ◽  
Effendi Effendi

Roasting coffee manually is widely applied by coffee producers. This process takes a very long time and is less efficient in terms of productivity for industry standards. This machine  is equipped with a thermocouple sensor as a temperature sensor that will measure the temperature in the roasting cylinder, then equipped with a timer as a reminder of roasting time that ranges from 15 minutes at a temperature of 200 degrees Celsius, this machine  is also equipped with android as a timer controller on the coffee roaster machine. This machine is also equipped with a microcontroller and Bluetooth as a media transmitter and data receiver. From the test results obtained data that Bluetooth can be used for data communication between the microcontroller and Android with a distance of 30 meters in the room, and 12 meters outside the room. If it exceeds that distance, then Bluetooth will not respond back


Sign in / Sign up

Export Citation Format

Share Document