Assessing the impact of atmospheric wet and dry deposition using chemical and toxicological analysis

Author(s):  
K. Eleftheriadis ◽  
A. Angelaki ◽  
A. Kungolos ◽  
L. Nalbandian ◽  
G. P. Sakellaropoulos
1987 ◽  
Vol 21 (4) ◽  
pp. 813-824 ◽  
Author(s):  
Al J.S. Tang ◽  
David Yap ◽  
Joel Kurtz ◽  
Walter H. Chan ◽  
Maris A. Lusis

Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


2018 ◽  
Author(s):  
David M. Nelson ◽  
Urumu Tsunogai ◽  
Ding Dong ◽  
Takuya Ohyama ◽  
Daisuke D. Komatsu ◽  
...  

Abstract. Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or come from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ~ +22 and +30 ‰ with higher values during winter and lower values in summer, which suggests greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19–+25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2021 ◽  
Author(s):  
Samuel Remy ◽  
Zak Kipling ◽  
Vincent Huijnen ◽  
Johannes Flemming ◽  
Swen Metzger ◽  
...  

<p>The Integrated Forecasting System (IFS) of ECMWF is used within the Copernicus Atmosphere Monitoring Service (CAMS) to provide global analyses and forecasts of atmospheric composition, including aerosols as well as reactive trace gases and greenhouse gases.</p><p>The aerosol model of the IFS, IFS-AER, is a simple sectional-bulk scheme that forecasts seven species:  dust, sea-salt, black carbon, organic matter, sulfate, and  since July 2019, nitrate and ammonium.  The main developments that have been recently carried out, tested and are now contemplated for implementation in the next operational version (known as cycle 48r1) are presented here.</p><p>The dry deposition velocities are computed as a function of roughness length, particle size and surface friction velocity, while wet deposition depends mainly on the precipitation fluxes. The parameterizations of both dry and wet deposition have been upgraded with more recent schemes, which have been shown to improve the simulated deposition fluxes for several aerosol species. The impact of this upgrade on the skill scores of simulated aerosol optical depth (AOD) and surface particulate matter concentrations against a range of observations is very positive.</p><p>The simulated surface concentration of nitrate and ammonium are frequently strongly overestimated over Europe and the  United States in the current version of the IFS. Nitrate, ammonium, and their precursors nitric acid and ammonia, were evaluated against a range of ground and remote data and it was found that the recently-implemented gas-particle partitioning scheme is too efficient in producing nitrate and ammonium particles.</p><p>A series of small-scale changes, such as adjusting nitrate dry deposition velocity, direct particulate sulphate emission, and limiting nitrate/ammonium production by the concentration of mineral cations, have been implemented and shown to be effective in improving the simulated surface concentration of  nitrate and ammonium.</p><p>The representation of secondary organic aerosol (SOA) in the IFS has been overhauled with the introduction of a new SOA species, distinct from primary organic matter, with anthropogenic and biogenic components. The implementation of this new species leads to a significant improvement of the simulated surface concentration of organic carbon. An evaluation of simulated SOA concentrations at the surface against climatological values derived from observations using Positive Matrix Factorisation (PMF) techniques also shows a reasonable agreement.</p>


2021 ◽  
Author(s):  
Outi Meinander ◽  
Enna Heikkinen ◽  
Jonas Svensson ◽  
Minna Aurela ◽  
Aki Virkkula ◽  
...  

<p>Black carbon (BC) and organic carbon (OC, including brown carbon BrC) aerosols in the atmosphere, and their wet and dry deposition, are important for their climatic and cryospheric effects. Seemingly small amounts of BC in snow, of the order of 10–100 parts per billion by mass (ppb), have been shown to decrease its albedo by 1–5 %. Due to the albedo-feedback mechanism, surface darkening accelerates snow and ice melt. In snow, the temporal variability of light absorbing aerosols, such as BC, depends both on atmospheric and cryospheric processes, mostly on sources and atmospheric transport, and dry and wet deposition processes, as well as post-depositional snow processes.</p><p>We started a new research activity on BC and OC wet and dry deposition at Helsinki Kumpula SMEAR III station (60°12 N, 24°57 E, Station for Measuring Ecosystem-Atmosphere Relations, https://www.atm.helsinki.fi/SMEAR/index.php/smear-iii). The work included winter, spring, summer and autumn deposition samples during January 2019 - June 2020 (sampling is currently on hold). In winter, wet deposition consisted of snowfall and rainwater samples. Dry deposition samples were separately collected in 2020. For sample collection, a custom-made device, including a heating-system, was applied. The samples were analyzed using the OCEC analyzer of the Finnish Meteorological Institute’s aerosol laboratory, Helsinki, Finland. The special features in our deposition data are: </p><ul><li>seasonal BC, OC, and TC (total carbon, the sum of BC and OC) deposition data for an urban background station at 60 <sup>o</sup>N</li> <li>precipitation received as either water or snow  </li> <li>dry deposition samples included (only in 2020)</li> <li>data as wet and dry deposition rates [concentration/time/area]</li> <li>simultaneous atmospheric measurements of the SMEAR III station</li> </ul><p>Since our deposition samples are collected manually, the data are non-continuous, yet they allow us to provide deposition rates. Such data can be utilized in various modeling approaches including, for example, climate and long-range transport and deposition modeling. According to our knowledge, these data are the first BC (determined as elemental carbon, EC), OC and TC wet and dry deposition data to represent Finland. Our sampling location, north of 60 deg. N, can be useful for other high-latitude studies and Arctic assessments, too.</p><p><em>Acknowledgements. We gratefully acknowledge support from the Academy of Finland NABCEA-project of Novel Assessment of Black Carbon in the Eurasian Arctic (no. 296302) and the Academy of Finland Flagship funding (grant no. 337552).</em></p>


2020 ◽  
pp. 118090
Author(s):  
Patricia López-García ◽  
María Dolores Gelado-Caballero ◽  
Matthew David Patey ◽  
José Joaquín Hernández-Brito

Sign in / Sign up

Export Citation Format

Share Document