High Resolution NMR Investigation of Nucleic Acid Structures

Author(s):  
D. R. Kearns
Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


2020 ◽  
Author(s):  
Di Liu ◽  
Yaming Shao ◽  
Joseph A. Piccirilli ◽  
Yossi Weizmann

<p>Though advances in nanotechnology have enabled the construction of synthetic nucleic acid based nanoarchitectures with ever-increasing complexity for various applications, high-resolution structures are lacking due to the difficulty of obtaining good diffracting crystals. Here we report the design of RNA nanostructures based on homooligomerizable tiles from an RNA single-strand for X-ray determination. Three structures are solved to near-atomic resolution: a 2D parallelogram, an unexpectedly formed 3D nanobracelet, and a 3D nanocage. Structural details of their constituent motifs—such as kissing loops, branched kissing-loops and T-junctions—that resemble natural RNA motifs and resisted X-ray determination are revealed. This work unveils the largely unexplored potential of crystallography in gaining high-resolution feedback for nanostructure design and suggests a novel route to investigate RNA motif structures by configuring them into nanoarchitectures.</p>


1969 ◽  
Vol 52 (5) ◽  
pp. 1074-1092 ◽  
Author(s):  
L H Keith ◽  
A L Alford ◽  
A W Garrison

Abstract The high resolution nuclear magnetic resonance spectra of the DDT class of pesticides and related compounds are discussed, including a study of the resonances of the aromatic protons as they are affected by various substiluents. The CCl3 moiety on the α-carbon strongly deshields the ortho protons on the aromatic rings, and this deshielding effect is greatly enhanced by substitution of a chlorine ortho rather than para on the aromatic ring. These deshielding effects are explained by a consideration of the electronegativity of the substituents and the stereochemistry of the molecule. The chemical shifts and coupling constants are tabulated.


Author(s):  
Xuming Sha ◽  
Shaodong Chen ◽  
Xiaojing Zheng ◽  
Xin Ye ◽  
Hailu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document